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Abstract. In this paper, we study the traveling wave solutions for a three species compe-
tition system with two weak aboriginal competitors and one strong alien competitor. We are
concerned with the existence of traveling waves such that these two co-existence aboriginal
competitors are wiped out by the invading alien strong competitor. First, we derive the
existence of wave profiles based on an application of Schauder’s fixed point theorem with
the help of constructing suitable generalized upper-lower solutions to capture the unstable
wave tail limit. Then a new method for deriving the stable wave tail limit is introduced.
Finally, the minimal invading speed is characterized.

1. Introduction

In this paper, we study the following diffusive Lotka-Volterra competition system

(1.1)


ut = duxx + r1u(1− u− a2v − a3w), x ∈ R, t > 0,

vt = dvxx + r2v(1− b1u− v − b3w), x ∈ R, t > 0,

wt = dwxx + r3w(1− c1u− c2v − w), x ∈ R, t > 0,

where u, v, w are three competitors and all parameters d, r1, r2, r3, a2, a3, b1, b3, c1, c2 are pos-

itive constants in which d stands for the diffusion coefficient(s) for all species, ri the intrinsic

growth rate, ai, bj, ck are inter-specific competition coefficients and the carrying capacity of

each species is normalized to be 1.

We are concerned with the existence of traveling wave solutions, namely, a solution (u, v, w)

of (1.1) in the form

(u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(z), z := x− st,

for some constant s ∈ R (the wave speed) and some functions {ϕi | i = 1, 2, 3} (the wave

profiles). In particular, we are interested in the traveling wave solution connecting two

constant equilibria of (1.1). Hence we are looking for unknown {s, ϕ1, ϕ2, ϕ3} that satisfies

(1.2)


dϕ′′

1 + sϕ′
1 + r1ϕ1(1− ϕ1 − a2ϕ2 − a3ϕ3) = 0, z ∈ R,

dϕ′′
2 + sϕ′

2 + r2ϕ2(1− b1ϕ1 − ϕ2 − b3ϕ3) = 0, z ∈ R,
dϕ′′

3 + sϕ′
3 + r3ϕ3(1− c1ϕ1 − c2ϕ2 − ϕ3) = 0, z ∈ R.
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The study of traveling waves of biological systems has attracted a lot of attention in

past years. Certain difficulties arise for systems without comparison principle. In this case,

the classical monotone iteration method is not applicable. To analyze these non-cooperative

systems, an application of Schauder’s fixed point theorem with the help of generalized upper-

lower solutions has been very successful in deriving traveling waves. For two or three species

predator-prey systems, we refer the reader to works [11, 8, 14, 13, 6, 7, 4, 5] and references

cited therein. For 2-species competition system with delay, we refer the reader to, e.g.,

[9, 12]. We also refer the reader to the n-species competition system with delay [10].

In the works [9, 12, 10] on competition systems, the constructed waves connect the zero

state to the positive co-existence state. Only recently have there been interesting studies

about 3-species competition systems which exhibit traveling waves that connect two non-zero

states (cf. [2, 3]). These studies employ some very sophisticated methods which are very

different from the above-mentioned method of (generalized) upper-lower solutions. The main

purpose of this work is to construct another class of traveling waves for 3-species competition

systems by using this very fundamental method.

We consider the situation that a strong alien competitor u is introduced to the habitat of

two aboriginal weak competing species v and w. Therefore, we assume that

(1.3) b1, c1 > 1, a2, a3, b3, c2 < 1.

In (1.3), in the absence of u, that b3 < 1 and c2 < 1 is a necessary and sufficient condition

for the weak competition between two species v and w. In this case, there is the semi-co-

existence state Ec := (0, vc, wc), where

vc :=
1− b3
1− b3c2

∈ (0, 1), wc :=
1− c2
1− b3c2

∈ (0, 1).

By computing the Jacobian matrix of the vector field

(r1u(1− u− a2v − a3w), r2v(1− b1u− v − b3w), r3w(1− c1u− c2v − w)),

we can easily check that the equilibria (0, 0, 0), (0, 0, 1), (0, 1, 0) are unstable and (1, 0, 0) is

stable (node) for the (diffusion-free) ODE system of (1.1). In this paper, we assume that

the state Ec is unstable for the ODE system of (1.1) which is equivalent to

(1.4) β := 1− a2vc − a3wc > 0.

Note that condition (1.4) can be achieved, e.g., when

(1.5) a2 + a3 < 1.

Our question is to see whether there are waves connecting Ec to (1, 0, 0). Biologically,

this means that the strong alien competitor u invades the habitat of two aboriginal weak
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competitors v, w to wipe out these two aboriginal species. Our main existence theorem of

this paper is

Theorem 1.1. Let s∗ := 2
√
dr1β. Suppose, in addition to conditions (1.3) and (1.4),

(1.6) r1β ≥ max{r2(b1 + b3c2vc), r3[c1 + c2(1− vc)]}.

Then there is a positive (for all components) solution (ϕ1, ϕ2, ϕ3) of (1.2) satisfying

(1.7) (ϕ1, ϕ2, ϕ3)(+∞) = (0, vc, wc)

for each s ≥ s∗. Moreover, if we further assume that

(1.8) a2b1 ≥ 1, a3c1 ≥ 1, a2 + a3 < 1,

then (ϕ1, ϕ2, ϕ3)(−∞) = (1, 0, 0).

Biologically, condition (1.8) means that the competitions of u to v and w are strong

enough (b1 ≥ 1/a2 and c1 ≥ 1/a3) and the competition of v and w to u is weak (a2+a3 < 1).

Intuitively, it can be expected that the strong alien competitor u will wipe out the existing

two weak competitors v and w if (1.8) is enforced.

On the other hand, we have the following non-existence theorem.

Theorem 1.2. Under conditions (1.3) and (1.4), there is no positive solution of (1.2) with

(ϕ1, ϕ2, ϕ3)(+∞) = (0, vc, wc) if s < s∗.

From the dynamical point of view, in the 6-D phase space (ϕ1, ϕ
′
1, ϕ2, ϕ

′
2, ϕ3, ϕ

′
3) of (1.2)

for s > 0, with eigenfunction in the form e−λz at z = +∞ it is easy to check that there are

(1) 3-d unstable manifold and 3-d stable manifold of (1, 0, 0, 0, 0, 0);

(2) 5-d unstable manifold and 1-d stable manifold of (0, 0, 1, 0, 0, 0);

(3) 5-d unstable manifold and 1-d stable manifold of (0, 0, 0, 0, 1, 0);

(4) 4-d unstable manifold and 2-d stable manifold of (0, 0, vc, 0, wc, 0);

under conditions (1.3) and (1.4). Hence it is possible to have heteroclinic orbits that connect

one of the states

{(0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, vc, 0, wc, 0)}

and (1, 0, 0, 0, 0, 0). In this paper, we only consider the case with connection between

(0, 0, vc, 0, wc, 0) and (1, 0, 0, 0, 0, 0). As for the range of wave speeds, it can be seen from

that two roots of

dλ2 − sλ+ r1β = 0

are real if and only if s ≥ s∗.
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The construction of upper-lower solutions here is motivated by the works [6, 7, 4, 5] based

on choosing the appropriate tail behaviors at z = +∞, the unstable tail. One of the main

difficulties of this work is the verification of the wave tail limit at z = −∞, the stable tail. To

overcome this difficulty, we introduce in §3 a new method which is originated from the idea of

contracting rectangles (cf. [8, 10, 4] and references cited therein). This is actually one of the

main contributions of this work. To be more precise, the method of contracting rectangles

is used to derive the tail limit of traveling wave, by constructing a sequence of rectangles

which shrinks to the desired limit point. The original idea in [8, 10] is for the convergence

to the positive (for all components) co-existence state. Then it was extended to the case of

semi-co-existence state (with one zero component) in [4] for a 3-species predator-prey system.

In [4], instead of 3-d rectangles, a sequence of 2-d contracting rectangles was adopted along

with an upper bound estimate for the tail limit of wave profile corresponding to the zero

component of the semi-co-existence state. In this paper, our target limit is (1, 0, 0) and we

introduce a sequence of intervals with one end fixed and the other end tending to 1. This

idea is new in the literature.

The rest of this paper is organized as follows. In §2, we introduce the notion of upper-

lower solutions and construct the upper-lower solutions for each s ≥ s∗. These upper-lower

solutions actually capture the wave tail limit at z = +∞, i.e., satisfy (1.7). Although the

verification is straightforward (as long as the suitable upper-lower solutions are found), we

provide the details for the reader’s convenience. Then we prove the wave tail limit at z = −∞
in §3. This completes the proof of Theorem 1.1. Finally, we give a proof of Theorem 1.2 in §4.
This gives the characterization of the minimal invading speed of the strong alien competitor.

In fact, we can relax the equal diffusivities condition to, e.g., d1 ≥ max{d2, d3} for waves

with super-critical speeds, where d1, d2, d3 are respectively the diffusion coefficients of species

u, v, w. However, the best result we are able to get for the waves with critical speed is under

the equal diffusivities assumption. Therefore, we only present the case of equal diffusivities

in this work.

2. Existence of wave profiles

We start with the definition of (generalized) upper-lower solutions as follows.

Definition 2.1. Continuous functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) are called a pair of (gen-

eralized) upper-lower solutions of (1.2) if ϕ
′′
i , ϕ

′′
i
, ϕ

′
i, ϕ

′
i
, i = 1, 2, 3, are bounded in R and
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the following inequalities

U1(z) := dϕ
′′
1(z) + sϕ

′
1(z) + r1ϕ1(z)[1− ϕ1(z)− a2ϕ2

(z)− a3ϕ3
(z)] ≤ 0,(2.1)

U2(z) := dϕ
′′
2(z) + sϕ

′
2(z) + r2ϕ2(z)[1− b1ϕ1

(z)− ϕ2(z)− b3ϕ3
(z)] ≤ 0,(2.2)

U3(z) := dϕ
′′
3(z) + sϕ

′
3(z) + r3ϕ3(z)[1− c1ϕ1

(z)− c2ϕ2
(z)− ϕ3(z)] ≤ 0,(2.3)

L1(z) := dϕ′′
1
(z) + sϕ′

1
(z) + r1ϕ1

(z)[1− ϕ
1
(z)− a2ϕ2(z)− a3ϕ3(z)] ≥ 0,(2.4)

L2(z) := dϕ′′
2
(z) + sϕ′

2
(z) + r2ϕ2

(z)[1− b1ϕ1(z)− ϕ
2
(z)− b3ϕ3(z)] ≥ 0,(2.5)

L3(z) := dϕ′′
3
(z) + sϕ′

3
(z) + r3ϕ3

(z)[1− c1ϕ1(z)− c2ϕ2(z)− ϕ
3
(z)] ≥ 0,(2.6)

hold for z ∈ R\E with some finite subset E of R.

Then, by a standard argument as that in, e.g., [11, 8]), we have the following existence

theorem for system (1.2). We omit its proof here safely.

Proposition 2.2. Given s > 0. Suppose that (1.2) has a pair of upper-lower solutions

(ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) such that

ϕ
i
≤ ϕi, i = 1, 2, 3,(2.7)

lim
z→z+

ϕ
′
i(z) ≤ lim

z→z−
ϕ
′
i(z), lim

z→z−
ϕ′
i
(z) ≤ lim

z→z+
ϕ′
i
(z), ∀ z ∈ E, i = 1, 2, 3.(2.8)

Then (1.2) has a solution (ϕ1, ϕ2, ϕ3) such that ϕ
i
≤ ϕi ≤ ϕi, i = 1, 2, 3.

2.1. Construction of upper-lower solutions: s > s∗.

Given s > s∗. Let λi, i = 1, 2, be the two positive solutions of

A(λ) := dλ2 − sλ+ r1β = 0

such that λ1 < λ2. Note that A(λ) < 0 for λ ∈ (λ1, λ2). We define

(2.9)


ϕ1(z) := min{1, e−λ1z}, ϕ

1
(z) := max{0, e−λ1z − pe−µz},

ϕ2(z) := min{1, vc + (1− vc)e
−λ1z}, ϕ

2
(z) := max{0, vc(1− e−λ1z)},

ϕ3(z) := min{1, wc + c2vce
−λ1z}, ϕ

3
(z) := max{0, wc(1− e−λ1z)},

where µ ∈ (λ1,min{2λ1, λ2}) (so that A(µ) < 0) and p satisfies

(2.10) p > max {1, r1[1 + a2(1− vc) + a3c2vc]/[−A(µ)]} .

Then we have

Lemma 2.3. The functions defined in (2.9) are a pair of upper-lower solutions of (1.2) for

a given s > s∗.
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Proof. To prove the lemma, it suffices to check (2.1)-(2.6) for the non-constant parts.

For z > 0, we compute

U1(z) = e−λ1z(dλ21 − sλ1) + r1e
−λ1z{1− e−λ1z − a2vc(1− e−λ1z)− a3wc(1− e−λ1z)}

= −r1βe−2λ1z ≤ 0,

using A(λ1) = 0 and β = 1− a2vc − a3wc. Hence (2.1) holds for all z ̸= 0.

For z > 0, since ϕ
1
≥ 0, we have

U2(z) ≤ (1− vc)e
−λ1z(dλ21 − sλ1) + r2ϕ2(z){1− vc − (1− vc)e

−λ1z − b3wc + b3wce
−λ1z}

= −r1β(1− vc)e
−λ1z ≤ 0,

using A(λ1) = 0 and 1− vc − b3wc = 0. Hence (2.2) holds for z ̸= 0.

For z > 0, we have

U3(z) ≤ c2vce
−λ1z(dλ21 − sλ1) + r3ϕ3(z){1− c2vc(1− e−λ1z)− wc − c2vce

−λ1z}

= −r1βc2vce−λ1z ≤ 0,

using A(λ1) = 0 and 1− c2vc − wc = 0. Hence (2.3) holds for z ̸= 0.

Now, for ϕ
1
, due to p > 1, there is z0 > 0 such that ϕ

1
(z) = 0 for z ≤ z0 and ϕ

1
(z) =

e−λ1z − pe−µz for z > z0. For z > z0, we compute

L1(z) ≥ e−λ1z(dλ21 − sλ1)− pe−µz(dµ2 − sµ)

+r1ϕ1
(z){1− e−λ1z − a2vc − a2(1− vc)e

−λ1z − a3wc − a3c2vce
−λ1z}

= −pe−µzA(µ) + r1ϕ1
(z){−1− a2(1− vc)− a3c2vc}e−λ1z

≥ e−µz{−pA(µ)− r1[1 + a2(1− vc) + a3c2vc]e
(µ−2λ1)z}

≥ −A(µ)e−µz{p− r1[1 + a2(1− vc) + a3c2vc]/[−A(µ)]} ≥ 0,

using the choice of µ and (2.10). Hence (2.4) holds for all z ̸= z0.

For z > 0, we calculate, using 1− vc − b3wc = 0,

L2(z) = −vce−λ1z(dλ21 − sλ1) + r2ϕ2
(z){−b1e−λ1z + vce

−λ1z − b3c2vce
−λ1z}

≥ r1βvce
−λ1z − r2vc(b1 + b3c2vc)e

−λ1z ≥ 0,

due to A(λ1) = 0 and (1.6). Hence (2.5) holds for all z ̸= 0.

Finally, for z > 0, we compute, using A(λ1) = 0 and 1− c2vc − wc = 0,

L3(z) ≥ r1βwce
−λ1z − r3wc[c1 + c2(1− vc)]e

−λ1z ≥ 0,

using again (1.6). Hence (2.6) holds for all z ̸= 0. This completes the proof of the lemma. �
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2.2. Construction of upper-lower solutions: s = s∗.

For s = s∗, A(λ) = 0 has a double root λ0 > 0. Note that s = s∗ = 2dλ0.

Set B := λ0e. We define

(2.11)



ϕ1(z) :=

{
1, z ≤ 1/λ0,

Bze−λ0z, z > 1/λ0,
ϕ
1
(z) :=

{
0, z ≤ z∗,

Bze−λ0z − q
√
ze−λ0z, z > z∗,

ϕ2(z) :=

{
1, z ≤ 1/λ0,

vc + (1− vc)Bze
−λ0z, z > 1/λ0,

ϕ
2
(z) :=

{
0, z ≤ 1/λ0,

vc(1−Bze−λ0z), z > 1/λ0,

ϕ3(z) :=

{
1, z ≤ 1/λ0,

wc + c2vcBze
−λ0z, z > 1/λ0,

ϕ
3
(z) :=

{
0, z ≤ 1/λ0,

wc(1−Bze−λ0z), z > 1/λ0,

where q > B/
√
λ0 so that z∗ := (q/B)2 > 1/λ0 and q satisfies

(2.12) q >
4

d
r1B

2[1 + a2(1− vc) + a3c2vc]

(
7

2λ0e

)7/2

.

Then we have

Lemma 2.4. The functions defined in (2.11) are a pair of upper-lower solutions of (1.2)

for s = s∗.

Proof. It suffices to check the range z > 1/λ0 for (2.1)-(2.3) and (2.5)-(2.6); while z > z∗ for

(2.4). The others are trivial.

We start with the computation

(2.13) d(Bze−λ0z)′′ + s(Bze−λ0z)′ = −r1βBze−λ0z,

using s = 2dλ0 and A(λ0) = 0. The identity (2.13) shall be used in the following computa-

tions without any further mention.

For z > 1/λ0, we compute

U1(z) = −r1βBze−λ0z + r1Bze
−λ0z{(1− a2vc − a3wc)−Bze−λ0z(1− a2vc − a3wc)}

= −r1Bze−λ0z{βBze−λ0z} ≤ 0,

using 1− a2vc − a3wc = β. Hence (2.1) holds for all z ̸= 1/λ0.

For z > 1/λ0, using ϕ1
≥ 0, we have

U2(z) ≤ −(1− vc)(r1β)Bze
−λ0z + r2ϕ2(z){(1− vc − b3wc)(1−Bze−λ0z)}

= −(1− vc)B(r1β)ze
−λ0z ≤ 0,
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using 1− vc − b3wc = 0. Hence (2.2) holds for all z ̸= 1/λ0.

For z > 1/λ0, using again ϕ
1
≥ 0, we compute

U3(z) ≤ −c2vcr1βBze−λ0z ≤ 0,

since 1− c2vc − wc = 0. Hence (2.3) holds for all z ̸= 1/λ0.

Next, we note that

d(
√
ze−λ0z)′′ + s(

√
ze−λ0z)′ = −d

4
z−3/2e−λ0z − r1β

√
ze−λ0z, z > 0,

using s = 2dλ0. Then, for z > z∗, we have

L1(z) ≥ −r1βBze−λ0z − q[−d
4
z−3/2e−λ0z − r1β

√
ze−λ0z]

+r1ϕ1
(z){(1− a2vc − a3wc)− [1 + a2(1− vc) + a3c2vc]Bze

−λ0z}

= q
d

4
z−3/2e−λ0z − r1ϕ1

(z)[1 + a2(1− vc) + a3c2vc]Bze
−λ0z

≥ d

4
z−3/2e−λ0z

{
q − 4

d
r1B

2[1 + a2(1− vc) + a3c2vc]
(
z7/2e−λ0z

)}
≥ d

4
z−3/2e−λ0z

{
q − 4

d
r1B

2[1 + a2(1− vc) + a3c2vc]

(
7

2λ0e

)7/2
}

≥ 0,

using the fact

max
z>0

{
z7/2e−λ0z

}
≤

(
7

2λ0e

)7/2

and condition (2.12). Hence (2.4) holds for all z ̸= z∗.

For z > 1/λ0, we compute

L2(z) = r1βvcBze
−λ0z + r2ϕ2

(z){(1− vc − b3wc) + vcBze
−λ0z − (b1 + b3c2vc)Bze

−λ0z}

≥ {r1β − r2(b1 + b3c2vc)}vcBze−λ0z ≥ 0,

using 1− vc − b3wc = 0 and (1.6). Hence (2.5) holds for all z ̸= 1/λ0. Similarly, we have

L3(z) ≥ wcBze
−λ0z{r1β − r3[c1 + c2(1− vc)]} ≥ 0, z > 1/λ0.

Hence (2.6) also holds for all z ̸= 1/λ0. Thereby, we complete the proof of the lemma. �

By the above construction of upper-lower solutions, we see that (1.7) holds. This proves

the first part of Theorem 1.1, by applying Proposition 2.2.

3. Wave tail limit at −∞

In this section, we let (ϕ1, ϕ2, ϕ3) be the solution obtained in the first part of Theorem 1.1

for a given s ≥ s∗. For the left-hand tail limit at −∞, we first let

ϕ−
i := lim inf

z→−∞
ϕi(z), ϕ

+
i := lim sup

z→−∞
ϕi(z), i = 1, 2, 3.
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Since ϕi ≥ 0, i = 1, 2, 3, by the maximum principle we have 0 ≤ ϕi ≤ 1, i = 1, 2, 3. Hence

0 ≤ ϕ−
i ≤ ϕ+

i ≤ 1, i = 1, 2, 3.

Then we have

Lemma 3.1. It holds

(3.1) ϕ−
1 ≥ γ1 := 1− a2 − a3 > 0,

provided (1.5) is enforced.

Proof. Since ϕi ≤ 1, i = 2, 3, U(x, t) := ϕ1(x− st) satisfies

Ut ≥ dUxx + r1U(1− a2 − a3 − U), x ∈ R, t > 0, U(x, 0) = ϕ1(x).

It follows from [1] and the comparison principle that

ϕ−
1 = lim inf

z→−∞
ϕ1(z) = lim inf

z→−∞
U(0,−z/s) ≥ γ1.

The lemma is thus proved. �

Now we define

m1(θ) := (1− θ)(γ1 − ϵ) + θ, θ ∈ [0, 1],

where ϵ ∈ (0, γ1). Since γ1 < 1, m1(θ) is increasing in θ ∈ [0, 1] such that m1(1) = 1. Let

A := {θ ∈ [0, 1) | ϕ−
1 > m1(θ)}.

By Lemma 3.1, 0 ∈ A and so the quantity θ0 := supA is well-defined such that θ0 ∈ (0, 1].

By passing to the limit, we also have

(3.2) ϕ−
1 ≥ m1(θ0).

To proceed further, we next derive better upper bounds for ϕi, i = 2, 3, as follows.

Lemma 3.2. Under condition (3.2), we have

ϕ+
2 ≤M2(θ0) := max{0, 1− b1m1(θ0)}, ϕ+

3 ≤M3(θ0) := max{0, 1− c1m1(θ0)}.

Proof. We follow the proof of [4, Lemma 4.11]. For any sequence {zn} tending to ∞, up to

a subsequence, we may assume that the function

ψ2(z) := lim
n→∞

ϕ2(z + zn), z ∈ R,

exists. Moreover, it follows from (1.2), (3.2) and ϕ3 ≥ 0 that

dψ′′
2 + sψ′

2 + r2ψ2[1− b1m1(θ0)− ψ2] ≥ 0 in R.

Since ϕ2 ≤ 1, by the parabolic comparison principle, ψ2(z) ≤ v(t) for any z ∈ R and t > 0,

where v solves

∂tv = r2v[1− b1m1(θ0)− v], t > 0, v(t = 0) = 1.
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Since v(t) → M2(θ0) as t → +∞, ψ2(z) ≤ M2(θ0) for all z ∈ R. This proves that ϕ+
2 ≤

M2(θ0). Similarly, we also have ϕ+
3 ≤M3(θ0) and the lemma is thus proved. �

Next, we prove that θ0 = 1. We assume by contradiction that θ0 ∈ (0, 1). Then, by the

continuity of m1(θ), θ0 ̸∈ A and so, by (3.2),

(3.3) ϕ−
1 = m1(θ0).

To reach a contradiction with (3.3), we set

α1 := 1−m1(θ0)− a2M2(θ0)− a3M3(θ0).

We claim that α1 > 0. Indeed, using Lemma 3.2, it is easy to compute

α1 ≥


(1− a2 − a3) + (a2b1 + a3c1 − 1)m1(θ0), if m1(θ0) < min{1/b1, 1/c1},
(1− a2) + (a2b1 − 1)m1(θ0), if m1(θ0) ∈ [1/c1, 1/b1),

(1− a3) + (a3c1 − 1)m1(θ0), if m1(θ0) ∈ [1/b1, 1/c1).

Then α1 > 0 follows easily from condition (1.8).

From α1 > 0, we can get a contradiction following an argument as that in [6, 7]. Indeed,

if ϕ1(z) is monotone ultimately as z → −∞, then

lim
z→−∞

ϕ1(z) = m1(θ0).

Next, an integration of ϕ1-equation from a negative integer −n to 0 gives

(3.4) −dϕ′
1(0) + dϕ′

1(−n)− sϕ1(0) + sϕ1(−n) = r1

∫ 0

−n

{ϕ1(z)(1− ϕ1 − a2ϕ2 − a3ϕ3)(z)}dz.

Since

lim
z→−∞

ϕ1(z)(1− ϕ1 − a2ϕ2 − a3ϕ3)(z) ≥ m1(θ0)α1 > 0,

we reach a contradiction by noting that the integral in (3.4) tends to ∞ as n→ ∞ and the

left-hand side of (3.4) is uniformly bounded for all n.

On the other hand, if ϕ1 is oscillatory as z → −∞, then we choose a sequence of minimal

points {zn} tending to −∞ such that ϕ1(zn) → m1(θ0) as n → ∞. It follows from the

ϕ1-equation in (1.2) that

0 = dϕ′′
1(zn) + sϕ′

1(zn) + r1ϕ1(zn)(1− ϕ1 − a2ϕ2 − a3ϕ3)(zn)

≥ r1ϕ1(zn)(1− ϕ1 − a2ϕ2 − a3ϕ3)(zn), ∀n.

This also implies a contradiction, by taking the limit inferior as n → ∞ and using α1 > 0.

Therefore, θ0 = 1. This implies that ϕ−
1 = 1 and so ϕ1(−∞) = 1.

Finally, applying Lemma 3.2 with θ0 = 1 and using b1, c1 > 1, we also conclude that

ϕ+
2 = ϕ+

3 = 0. Hence (ϕ2, ϕ3)(−∞) = (0, 0). We conclude that (ϕ1, ϕ2, ϕ3)(−∞) = (1, 0, 0)

and the proof of the second part of Theorem 1.1 is thus completed.
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4. Non-existence of traveling waves

We provide in this section a proof of the non-existence of traveling waves as follows.

Proof. We follow the proof of [7, Proposition 5.1] by a contradiction argument. Suppose that

there is a positive solution (ϕ1, ϕ2, ϕ3) of (1.2) such that

(4.1) (ϕ1, ϕ2, ϕ3)(+∞) = (0, vc, wc)

for some s ∈ R.
We first claim that s > 0. Assume for contradiction that s ≤ 0. Then it follows from (4.1)

and (1.4) that Φ(z) → β > 0 as z → ∞, where

Φ(z) := 1− ϕ1(z)− a2ϕ2(z)− a3ϕ3(z).

Hence there is a large K > 0 such that

Φ(z) ≥ β/2, ∀ z ≥ K.

An integration of the ϕ1-equation in (1.2) from y ≥ K to ∞ gives

r1β

2

∫ ∞

y

ϕ1(z)dz ≤ r1

∫ ∞

y

{ϕ1(1− ϕ1 − a2ϕ2 − a3ϕ3)}(z)dz

= dϕ′
1(y) + sϕ1(y) ≤ dϕ′

1(y), ∀ y ≥ K.

This implies, by an integration from K to ∞ and using ϕ1(+∞) = 0, that

r1β

2

∫ ∞

K

∫ ∞

y

ϕ1(z)dzdy ≤ −dϕ1(K) < 0,

a contradiction to the positivity of ϕ1 in R. Hence we must have s > 0.

With this information, Theorem 1.2 can be proved by the same contradiction argument

as that in [7, Proposition 5.1] with the help of the classical spreading property for scalar

equations ([1]). We omit the details here. �
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