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Abstract. This paper deals with the long time behavior of a reaction-diffusion system

modeling the spatio-temporal interaction of two preys and one predator in a shifting envi-

ronment. Here the prey populations weakly compete, and the environment becomes hostile

for the three species with a constant positive speed. We investigate the survival of the

species and describe the spreading speeds of different species. The dynamical behavior ex-

hibits various regions composed of different combinations of species, which propagate with

different wave speeds.

1. Introduction

Global climate change has led to the shift in the habitat of many ecological species,

which causes to influence the survival and spreading of species. Mathematical models with

an environmental shift represented by reaction-diffusion equations have attracted a lot of

attentions in the last decades. A single species model in shifting environment is given by

ut(x, t) = duxx(x, t) + u(x, t)f(x− st, u(x, t)), x ∈ R, t > 0,

where the function f represents the shifting environment with a changing speed s. We refer

the reader to [1, 3, 4, 5, 17, 18, 22] for single equation models. For multi-species interaction

systems in shifting environments, we refer the reader to [16, 31, 34, 35, 30] for 2-species

competition systems, [33] for a cooperative model and [10, 11] for predator-prey models.

See also [6, 7, 8, 21, 23, 26, 36] and references therein for more related works on models in

shifting environments.

In this paper, we consider the following diffusive predator-prey model with two preys and

one predator:

ut(x, t) = d1uxx(x, t) + r1u(x, t)[1 + α(x− st)− (u+ hv + aw)(x, t)], x ∈ R, t > 0,(1.1)

vt(x, t) = d2vxx(x, t) + r2v(x, t)[1 + α(x− st)− (ku+ v + aw)(x, t)], x ∈ R, t > 0,(1.2)

wt(x, t) = d3wxx(x, t) + r3w(x, t)[−1 + α(x− st) + (bu+ bv − w)(x, t)], x ∈ R, t > 0,(1.3)

where the unknown functions u, v and w, respectively, stand for the population densities

of two preys and predator species at position x and time t. Parameters di, ri, i = 1, 2, 3,

h, k, a, b are positive and represent the diffusion coefficients, intrinsic growth rates, competing
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rates, predation rate and conversion rate, respectively. In this work, we assume that the

competition between the two preys is weak, i.e., 0 < h, k < 1.

In system (1.1)-(1.3), the term α(x− st) represents an environmental shift. Here the con-

stant s > 0 denotes the shifting speed of the environment while the function α(·) describes

the environmental change. We assume that it models a gradual deterioration of the environ-

ment, propagating from left to right at the speed s. More precisely, we always assume that

α is a continuously differentiable and nondecreasing function in R such that

(1.4) α(−∞) ∈ (−∞,−1), α(∞) = 0.

Here α(∞) = 0 is imposed so that the maximal carrying capacities of both preys are

normalized to be 1. Moreover, due to (1.4), the growth rates of two preys, r1(1 + α(x− st))
and r2(1 + α(x− st)), are positive in the region x− st� 1 (ahead the climate change) and

negative for x− st� −1. This means that the environment is favorable to the preys ahead

of the climate change, then gradually deteriorates until it becomes hostile to the species.

Note also that the predator species can feed on both prey populations but cannot survive

without any prey due to the negative constant −1 in (1.3). See also Remark 4.1 in §4. As

far as the predator is concerned, we assume that b > 1, which means that the predator can

survive when the total populations of these two preys stay at a certain high level in the

favorable region x− st� 1.

Less work is done for the predator-prey interaction system with climate change because

of some mathematical difficulties arising from the lack of a comparison principle. Also,

an indirect influence of climate change on predators has been considered so far [10, 11],

in which the predators are only affected by the ecological change of their food in shifting

environments. Unlike the previous works, this paper considers a situation where climate

change directly affects the predator. Such direct effects of climate change on both prey and

predator can happen in nature; for example, the habitat of both predator and prey is lost

through desertification or rising sea levels due to climate change; the polar bears’ habitat

shrinks due to the melting sea ice. Our goal is to investigate the propagation of species in

such a shifting environment.

To this aim, we investigate the long time behavior of the solutions of (1.1)-(1.3), equipped

with suitable initial data, typically compactly supported or with support bounded above,

that is mostly concentrated in the unfavorable region x� −1. Here we study the persistence

of the different populations under the forced environmental shift and describe the spreading

properties. As far as the spreading property is concerned, homogeneous reaction-diffusion

systems in which the comparison principle does not hold have attracted much attention in

recent years. We refer the reader to [15, 25, 27, 29] for arguments based on refined estimates

of the heat kernel, to [9] for arguments based on local comparison, and to [12, 13, 14, 28, 32]

for ideas based on uniform persistence like arguments in dynamical systems.

In this paper, we analyze the long time behavior for the solutions of (1.1)-(1.3) by using

partial comparison arguments and some ideas based on dynamical system theory. This long

time asymptotic behavior will strongly depend upon the constant equilibria of the problem

in the favorable region, that when α = 0. One may observe that these constant equilibria
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without the α-term are given by{
E1 = (1, 0, 0), E2 = (0, 1, 0), Eu = (up, 0, wp),

Ev = (0, vp, wp), Ec = (uc, vc, 0), E∗ = (u∗, v∗, w∗),

where {
vp = up = 1+a

1+ab
, wp = b−1

1+ab
, uc = 1−h

1−hk , vc = 1−k
1−hk ,

u∗ = (1+a)(1−h)
1−hk+ab(2−h−k)

, v∗ = (1+a)(1−k)
1−hk+ab(2−h−k)

, w∗ = b(2−h−k)−1+hk
1−hk+ab(2−h−k)

.

As will be seen later, the boundary equilibria will have a strong impact for the dynamical

behavior of the problem, yielding various propagation regions.

In order to describe this dynamical behavior, we introduce various linear speeds associated

to these boundary equilibria by setting

s∗1 := 2
√
d1r1, s

∗
2 := 2

√
d2r2, s

∗
3 := 2

√
d3r3β1,

s∗∗1 := 2
√
d1r1(1− h), s∗∗2 := 2

√
d2r2(1− k), s∗∗3 := 2

√
d3r3β2,

s∗∗∗1 := 2
√
d1r1δ1, s

∗∗∗
2 = 2

√
d2r2δ2, s

∗∗∗
3 = 2

√
d3r3(b− 1),

where

β1 := 2b− 1, β2 := b(uc + vc)− 1, δ1 := 1− hvp − awp, δ2 := 1− kup − awp.

Note that

s∗i > s∗∗i > s∗∗∗i , i = 1, 2, 3,

due to 0 < h, k < 1 and b > 1.

Let (u, v, w) be a solution of system (1.1)-(1.3) with initial data (u0, v0, w0). Set

XK := {ϕ ∈ C0(R) : 0 ≤ ϕ ≤ K for x ∈ R}

for a positive constant K. It is easy to see that (u, v, w)(·, t) ∈ X1 ×X1 ×X2b−1 for t > 0,

when (u0, v0, w0) ∈ X1 ×X1 ×X2b−1.

Now, we state the main results of this paper as follows.

First, we have the following extinction results, when the spreading of the preys cannot

follow the environmental shift.

Theorem 1.1. Assume that (u0, v0, w0) ∈ X1 × X1 × X2b−1 and all supports of u0, v0 and

w0 are bounded above. Then

lim
t→∞

u(x, t) = 0, uniformly for x ∈ R, if s > s∗1;(1.5)

lim
t→∞

v(x, t) = 0, uniformly for x ∈ R, if s > s∗2;(1.6)

lim
t→∞

w(x, t) = 0, uniformly for x ∈ R, if s > ŝ := max{s∗1, s∗2}.(1.7)

Moreover, if u0 and v0 have compact supports and the support of w0 is bounded above, then

lim
t→∞

w(x, t) = 0, uniformly for x ∈ R, if s > s∗3.
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Theorem 1.2. Assume that (u0, v0, w0) ∈ X1×X1×X2b−1. The following statements hold.

(i) For any small ζ > 0, we have

lim
t→∞

sup
x≤(s−ζ)t

u(x, t) = lim
t→∞

sup
x≤(s−ζ)t

v(x, t) = lim
t→∞

sup
x≤(s−ζ)t

w(x, t) = 0.

(ii) If u0(x) = v0(x) = w0(x) = 0 for x ≥ K for some constant K, then

lim
t→∞

sup
x≥(s∗1+τ)t

u(x, t) = lim
t→∞

sup
x≥(s∗2+τ)t

v(x, t) = lim
t→∞

sup
x≥(s∗3+τ)t

w(x, t) = 0,(1.8)

lim
t→∞

sup
x≥(ŝ+τ)t

w(x, t) = 0, ŝ = max{s∗1, s∗2},(1.9)

for any τ > 0.

Next, for the spreading behaviors we have

Theorem 1.3. Let s∗2 < s∗1. Assume that (u0, v0, w0) ∈ X1 × X1 × X2b−1, u0 6= 0, and the

supports of v0 and w0 are bounded above. Suppose that s∗3 < s∗1. If s ∈ (max{s∗2, s∗3}, s∗1),

then

(1.10) lim
t→∞

{
sup

(s+ε)t≤x≤(s∗1−ε)t

[
|u(x, t)− 1|+ v(x, t) + w(x, t)

]}
= 0

for all ε ∈ (0, (s∗1 − s)/2).

A similar result to Theorem 1.3 holds for E2, by interchanging the roles of u and v.

Theorem 1.4. Let s∗2 < s∗1. Assume that (u0, v0, w0) ∈ X1 ×X1 ×X2b−1 and u0, v0 and w0

have nonempty supports which are bounded above. Suppose that s∗2 < s∗∗∗3 . If s ∈ (s∗2, s∗∗),

s∗∗ := min{s∗1, s∗∗∗3 }, then

(1.11) lim
t→∞

{
sup

(s+ε)t≤x≤(s∗∗−ε)t

[
|u(x, t)− up|+ v(x, t) + |w(x, t)− wp|

]}
= 0

for all ε ∈ (0, (s∗∗ − s)/2)

A similar result to Theorem 1.4 holds for Ev, by interchanging the roles of u and v.

Theorem 1.5. Assume that (u0, v0, w0) ∈ X1×X1×X2b−1, u0 6= 0, v0 6= 0 and the support of

w0 is bounded above. Suppose that s∗3 < s∗∗1 and s∗3 < s∗∗2 . If s ∈ (s∗3, s
∗∗), s∗∗ := min{s∗∗1 , s∗∗2 },

then

(1.12) lim
t→∞

{
sup

(s+ε)t≤x≤(s∗∗−ε)t

[
|u(x, t)− uc|+ |v(x, t)− vc|+ w(x, t)

]}
= 0

for all ε ∈ (0, (s∗∗ − s)/2).

Lastly, for the co-existence case, we have

Theorem 1.6. Assume that (u0, v0, w0) ∈ X1 ×X1 ×X2b−1 such that u0 6= 0, v0 6= 0 and

w0 6= 0. Set s := min{s∗∗∗1 , s∗∗∗2 , s∗∗∗3 }. If s < s, then

(1.13) lim
t→∞

{
sup

(s+ε)t≤x≤(s−ε)t

[
|u(x, t)− u∗|+ |v(x, t)− v∗|+ |w(x, t)− w∗|

]}
= 0
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for all ε ∈ (0, (s− s)/2).

The above theorems describe the spreading speeds and the spreading region for the dif-

ferent species: a single prey in Theorem 1.3, a single prey and the predator in Theorem 1.4,

the two preys without predator in Theorem 1.5 and the three species in Theorem 1.6. As

in [13], the long time behavior of three species problem without climate shift is not fully

understood. It can be expected that the weak competition between the two preys may

produce the spreading speed of invasion which is non-linearly determined (see [19, 24] for

the purely competitive case). Roughly speaking, when the climate shift is included, these

spreading speeds should be compared with the forced speed for the environmental shift since

no species can survive in the hostile region x− st� −1 in the large times t� 1.

Consequently, due to the weak competition between the two preys, the spreading regions

mentioned in the above results are sometimes not optimal. For instance one may expect that

the optimal result for the spreading to Ec in Theorem 1.5 is the range s ∈ (s∗3,min{s∗1, s∗2}).
However, due to the best known result for the spreading result of the two weak species

competition system (see [30] or Proposition 3.7), we can only derive the spreading to Ec for

s ∈ (s∗3, s
∗∗).

In the absence of the slow prey v, i.e., when s∗2 < s < s∗1, the survival of both fast prey u

and the predator w can be obtained similarly to that in [10] for a predator-prey system with

a single prey. However, when s < min{s∗1, s∗2, s∗3}, the description of the spreading speed and

region for the predator w is very difficult to obtain. Roughly speaking, for the survival of

the predator, its growth rate has to be positive, that is, u+ v > 1/b in the favorable region

x − st � 1. While the property u + v uniformly positive in some regions can be achieved,

proving that u+ v reaches a suitable level turns out to be a complicated issue. We can only

derive some sufficient conditions to ensure such a property. As mentioned above, our proofs

are mostly based on dynamical systems arguments. One of the difficulties to overcome is to

derive some positive lower bounds estimation of solutions. Although the upper bound s of

shifting speed to the co-existence state E∗ is far from optimal, the proof of Theorem 1.6 is

quite intricate.

The rest of this paper is organized as follows. In Section 2, we prove our extinction results,

namely Theorem 1.1 and Theorem 1.2. The proofs are very similar to that in [10]. To be

self-contained, we provide the details here for the reader’s convenience. One should note

that the shifting effect is taken directly in each species in system (1.1)-(1.3), while it was

imposed only for the prey species in [10]. Section 3 is devoted to the spreading dynamics. We

prove Theorems 1.3, 1.4, 1.5 and 1.6 in Section 3. Finally, in §4, we provide some numerical

simulations for readers to better understand the spreading dynamics of system (1.1)-(1.3).

2. Extinction

In this section, we show the extinction of species as t → +∞ when the species cannot

keep pace with the environmental shifting speed.

2.1. Complete extinction: Theorem 1.1.
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Proof of Theorem 1.1. First we assume that s > s∗1. Then, by the comparison principle for

the scalar equation, we get that u(x, t) ≤ u(x, t) for x ∈ R, t > 0, where u is the solution of

the initial value problem

(2.1)

{
ut(x, t) = d1uxx(x, t) + r1u(x, t)[1 + α(x− st)− u(x, t)], x ∈ R, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ R.

From [23, Theorem 2.1] and u0 ≤ 1, we have that limt→∞ u(x, t) = 0 uniformly for x ∈ R
when s > s∗1. Hence (1.5) follows. The case for v in (1.6) is similar, by comparing v with v,

where v is the solution of

(2.2)

{
vt(x, t) = d2vxx(x, t) + r2v(x, t)[1 + α(x− st)− v(x, t)], x ∈ R, t > 0,

v(x, 0) = v0(x) ≥ 0, x ∈ R.

Next, let s > ŝ = max{s∗1, s∗2}. Then, by (1.5) and (1.6), for a given ε ∈ (0, 1/(2b)) there

exists T0 > 0 such that u(x, t) ≤ ε and v(x, t) ≤ ε for x ∈ R, t > T0. Consider the function

W (x, t) := (2b− 1)e−σ(t−T0), σ ∈ (0, r3(1− 2bε)).

Then

Wt − {d3Wxx + r3W (−1 + 2bε−W )}
= −(2b− 1)e−σ(t−T0)[σ − r3(1− 2bε)− r3(2b− 1)e−σ(t−T0)] ≥ 0.

By comparison, w(x, t) ≤ W (x, t) for x ∈ R, t ≥ T0, since W (x, T0) = 2b − 1 ≥ w(x, T0).

Thus limt→∞w(x, t) = 0 uniformly for x ∈ R, when s > ŝ.

Finally, we assume that s > s∗3. Choose δ > 0 so small that s > 2
√
r3(2b+ 2bδ − 1), and

consider the scalar equation for i = 1, 2 that

(2.3) zt(x, t) = dizxx(x, t) + riz(x, t)[α(x− st) + 1 + δ − z(x, t)], x ∈ R, t > 0.

From [22, Theorem 1.1], (2.1) has a forced traveling wave solution φi,δ(x − st) such that

φi,δ is nondecreasing, φi,δ(−∞) = 0 and φi,δ(∞) = 1 + δ. Since u0 and v0 are compactly

supported with u0 ≤ 1 and v0 ≤ 1, we can choose L > 0 such u0(x) < φ1,δ(x + L) and

v0(x) < φ2,δ(x+L) for x ∈ R. Then, by comparison principle, u(x, t) ≤ φ1,δ(x− st+L) and

v(x, t) ≤ φ2,δ(x− st+ L) for x ∈ R, t > 0.

Now, let

f(x− st) := −1 + α(x− st) + b[φ1,δ(x− st+ L) + φ2,δ(x− st+ L)].

Then f is nondecreasing with f(−∞) = −1 + α(−∞) < 0 and f(∞) = 2b + 2bδ − 1 > 0.

Let w be the solution of the initial value problem

(2.4)

{
wt(x, t) = d3wxx(x, t) + r3w(x, t)[f(x− st)− w(x, t)], x ∈ R, t > 0,

w(x, 0) = w0(x) ≥ 0, x ∈ R.

From the comparison principle, w(x, t) ≤ w(x, t) for x ∈ R, t > 0. Then it follows from [23,

Theorem 2.1] that w(x, t) converges to 0 uniformly for x ∈ R as t → ∞. The theorem is

thus proved. �
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2.2. Partial extinction: Theorem 1.2.

Next, we give a proof of Theorem 1.2 as follows.

Proof of Theorem 1.2. By a comparison with suitable supersolutions as defined in the proof

of Theorem 1.1 (see (2.1), (2.2) and (2.4)), part (i) and (1.8) in part (ii) follow from [23,

Theorem 2.2 (i)] and [23, Theorem 2.2 (ii)], respectively.

It remains to prove (1.9) when s∗3 > ŝ. Without loss of generality we may assume that

ŝ = s∗1. For this, let τ > 0 be given and let λi the smaller positive root of

diλ
2 − (s∗i + τ/2)λ+ ri = 0

for i = 1, 2. Then zi(x, t) := Aie
−λi[x−(s∗i+τ/2)t] is a solution of the following linear equation

zi,t(x, t) = dizi,xx(x, t) + rizi(x, t),

for any positive constant Ai. Since u0(x) = v0(x) = 0 for x ≥ K, we can choose Ai large

such that

u0(x) ≤ A1e
−λ1x, v0(x) ≤ A2e

−λ2x

for all x ∈ R. Then, by the comparison principle,

(2.5) 0 ≤ u(x, t) ≤ A1e
−λ1[x−(s∗1+τ/2)t], 0 ≤ v(x, t) ≤ A2e

−λ2[x−(s∗2+τ/2)t]

for x ∈ R, t ≥ 0.

Now, we consider a function W (x, t) := min
{

2b− 1, Be−λ3[x−(s∗1+τ/2)t]
}

, where λ3 > 0 is

chosen small enough such that

d3λ
2
3 − (s∗1 + τ/2)λ3 −

r3

2
< 0,

and B > 0 will be chosen later. Note that, for (x, t) with W (x, t) = Be−λ3[x−(s∗1+τ/2)t],

e−λi[x−(s∗i+τ/2)t] =
[
e−λ3[x−(s∗i+τ/2)t]

]λi/λ3
<

[
2b− 1

B

]λi/λ3
, i = 1, 2.

Then, for such (x, t), W (x, t) satisfies

Wt − d3Wxx − r3W [−1 + b(A1e
−λ1[x−(s∗1+τ/2)t] + A2e

−λ2[x−(s∗2+τ/2)t])−W ]

≥ r3W

{
1

2
− b
[
A1

(
2b− 1

B

)λ1/λ3
+ A2

(
2b− 1

B

)λ2/λ3 ]}
≥ 0

if we choose B large enough. For (x, t) with W (x, t) = 2b− 1, it is clear that

Wt − d3Wxx − r3W (−1 + 2b−W ) = 0.

Hence W is a supersolution of

wt = d3wxx + r3w
[
−1 + b

(
min{1, A1e

−λ1[x−(s∗1+τ/2)t]}+ min{1, A2e
−λ2[x−(s∗2+τ/2)t]}

)
− w

]
.

Recall from (2.5) that

u(x, t) ≤ min{1, A1e
−λ1[x−(s∗1+τ/2)t]]}, v(x, t) ≤ min{1, A2e

−λ2[x−(s∗2+τ/2)t]}.
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Using α ≤ 0, it follows from the comparison principle that

w(x, t) ≤ Be−λ3τt/2, x ≥ (s∗1 + τ)t, t ≥ T0,

for some large T0. This proves (1.9) and so Theorem 1.2 is proved. �

3. Spreading dynamics

3.1. Spreading to E1.

We assume that s∗2 < s∗1, s∗3 < s∗1 and s ∈ (max{s∗2, s∗3}, s∗1).

Proof of Theorem 1.3. Let s∗1(δ) := 2
√
d1r1(1− δ), δ ∈ (0, 1). Fix s ∈ (max{s∗2, s∗3}, s∗1) and

ε ∈ (0, (s∗1 − s)/2). Choose δ0 > 0 small enough such that

s∗1 − ε ≤ s∗1(δ)− ε/2, s < s∗1(δ), ε < (s∗1(δ)− s), ∀ δ ∈ (0, δ0).

Since s > max{s∗2, s∗3}, by Theorem 1.1, both v and w converge to zero uniformly on R as

t→∞.

For a δ ∈ (0, δ0), there is T0 � 1 such that (hv + aw)(x, t) ≤ δ for all x ∈ R, t ≥ T0. Let

u and u be the solutions of{
ut(x, t) = d2uxx(x, t) + r2u(x, t)[1 + α(x− st)− δ − u(x, t)], x ∈ R, t > T0,

u(x, 0) = u(x, T0) ≥ 0, x ∈ R,

and {
ut(x, t) = d2uxx(x, t) + r2u(x, t)[1 + α(x− st)− u(x, t)], x ∈ R, t > T0,

u(x, 0) = u(x, T0) ≥ 0, x ∈ R,

respectively. Then u(x, t) ≤ u(x, t) ≤ u(x, t) for x ∈ R, t ≥ T0, by comparison.

On the other hand, from [23, Theorem 2.2 (iii)], we have

lim
t→∞

{
sup

(s+ε/2)t≤x≤(s∗1(δ)−ε/2)t

|u(x, t)− (1− δ)|

}
= 0,

lim
t→∞

{
sup

(s+ε)t≤x≤(s∗1−ε)t
|u(x, t)− 1|

}
= 0,

since ε ∈ (0, (s∗1(δ)− s)). Hence we deduce that

lim sup
t→∞

{
sup

(s+ε)t≤x≤(s∗1−ε)t
|u(x, t)− 1|

}
≤ δ.

Letting δ ↓ 0, we have the desired result. �
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3.2. Spreading to Eu.

Throughout this section we fix (u, v, w) a solution of (1.1)-(1.3) equipped with an initial

data (u0, v0, w0) such that all components have nonempty supports which are bounded

above.

For s < c1 < c2 we define ω[c1,c2] as the set of the functions (ũ, ṽ, w̃) : R2 → R3 such that

there exist sequences {tn} ⊂ [0,∞) and {xn} ⊂ R with tn →∞ and xn ∈ [c1tn, c2tn] for all

n ≥ 0 such that

(ũ, ṽ, w̃)(x, t) = lim
n→∞

(u, v, w)(x+ xn, t+ tn) locally uniformly for (x, t) ∈ R2.

Let us also observe that, since c1 > s, any (ũ, ṽ, w̃) ∈ ω[c1,c2] becomes an entire solution of

the homogeneous problem

ut(x, t) = d1uxx(x, t) + r1u(x, t)[1− (u+ hv + aw)(x, t)], x ∈ R, t ∈ R,(3.1)

vt(x, t) = d2vxx(x, t) + r2v(x, t)[1− (ku+ v + aw)(x, t)], x ∈ R, t ∈ R,(3.2)

wt(x, t) = d3wxx(x, t) + r3w(x, t)[−1 + (bu+ bv − w)(x, t)], x ∈ R, t ∈ R,(3.3)

We start with the following lemma about a weak pointwise spreading lemma in the fast

prey case. We assume s∗2 < s∗1, s∗2 < s∗3 and set s∗ = min{s∗1, s∗3}.

Lemma 3.1. Suppose that s ∈ (s∗2, s
∗). Fix any c1 < c2 such that s < c1 < c2 < s∗. Then

for any c ∈ [c1, c2] there exists µ1(c) ∈ (0, 1) such that the solution (u, v, w) satisfies

(3.4) lim sup
t→∞

u(ct, t) ≥ µ1(c),

and for any (ũ, ṽ, w̃) ∈ ω[c1,c2] with ũ 6= 0

(3.5) lim sup
t→∞

ũ(ct, t) ≥ µ1(c).

Proof. Fix s < c1, c2 < s∗. Here we focus on proving (3.5), that is for solutions in ω[c1,c2].

The proof of (3.4), for the solution itself, follows from the same arguments.

First recalling that s > s∗2, Theorem 1.1 ensures as a special case that

sup
x∈[c1t,c2t]

v(x, t)→ 0 as t→∞,

this implies that:

for any (ũ, ṽ, w̃) ∈ ω[c1,c2] one has ṽ = 0.

Now to prove (3.5) we argue by contradiction by assuming that there are c ∈ [c1, c2], se-

quences {tn} and {(ũn, 0, w̃n)} ⊂ ω[c1,c2] with ũn 6= 0 for all n ≥ 0 and limn→∞ tn =∞ such

that

(3.6) lim
n→∞

sup
t≥tn

ũn(ct, t) = 0.

Then we claim that

(3.7) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

ũn(x, t)} = 0, ∀R > 0.
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Otherwise, there exist sequences {xn} ⊂ [−R,R] and {τn} with τn ≥ tn such that

lim inf
n→∞

ũn(xn + cτn, τn) > 0.

Without loss of generality (up to a subsequence) we may assume that xn → x0 as n → ∞
for some x0 ∈ [−R,R]. By the standard parabolic estimates and using c > s, up to the

extraction of a subsequence, we have

(ũn, 0, w̃n)(x+ cτn, t+ τn)→ (u∞, 0, w∞)(x, t) as n→∞

locally uniformly in R× R, where (u∞, w∞) is a nonnegative bounded entire solution of

(3.8)

{
ut = d1uxx + r1u(1− u− aw), x ∈ R, t ∈ R,
wt = d3wxx + r3w(−1 + bu− w), x ∈ R, t ∈ R.

Since u∞(0, 0) = 0 by (3.6), the strong maximum principle implies that u∞ ≡ 0. However,

u∞(x0, 0) > 0, a contradiction. Hence (3.7) holds.

Next, we derive that

(3.9) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

w̃n(x, t)} = 0, ∀R > 0.

Indeed, taking any sequence {xn} ⊂ [−R,R] and {τn} with τn ≥ tn for all n, set

(u∞, w∞)(x, t) := lim
n→∞

(ũn, w̃n)(x+ cτn, t+ τn).

Then u∞ ≡ 0, by (3.7), and w∞ is a nonnegative bounded entire solution of

(w∞)t = d3(w∞)xx + r3w∞(−1− w∞), x ∈ R, t ∈ R.

This leads to w∞ ≡ 0. Hence (3.9) follows.

Now, let

λR :=
c2

4d1

+
d1π

2

4R2
, φ(x) := e−cx/(2d1) cos

(πx
2R

)
.

Then (λR, φ) satisfies

−d1φxx − cφx = λRφ in (−R,R); φ(±R) = 0.

Since c < s∗1, we can find constants 0 < δ � 1 and R � 1 such that c2/(4d1) < λR <

r1(1 − 2δ). Note that c > s and v tends to zero uniformly in R. Hence, by (1.1), (3.7) and

(3.9), for large enough n the function ũn(x, t) satisfies

(ũn)t ≥ d1(ũn)xx + r1(1− δ)ũn for x ∈ (ct−R, ct+R), t ≥ tn.

Then ûn(x, t) := ũn(x+ ct, t) satisfies

(ûn)t ≥ d1(ûn)xx + c(ûn)x + r1(1− δ)ûn for x ∈ (−R,R), t ≥ tn.

Note that ũn > 0 by the strong maximum principle. We can choose a positive constant γ

such that ûn(x, tn) ≥ γer1δtnφ(x) for all x ∈ [−R,R]. Then a comparison principle gives that

ûn(x, t) ≥ γer1δtφ(x), |x| ≤ R, t ≥ tn.

This implies that ũn(ct, t)→∞ as t→∞, a contradiction. Hence the lemma is proved. �
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Next, we derive a pointwise spreading lemma for the fast prey.

Lemma 3.2. Suppose that s ∈ (s∗2, s
∗). For any c ∈ (s, s∗) there exists µ2(c) ∈ (0, 1) such

that

(3.10) lim inf
t→∞

u(ct, t) ≥ µ2(c),

where (u, v, w) is the fixed solution of (1.1)-(1.3).

Proof. Again, proceed by a contradiction by assuming that there are c ∈ (s, s∗) and a

sequence {tn} with tn →∞ as n→∞ such that

(3.11) lim
n→∞

u(ctn, tn) = 0.

Fix s < c1 < c < c2 < s∗. By (3.4), we can choose a sequence {t′n} with t′n < tn and t′n →∞
such that

u(ct′nt
′
n) ≥ µ1(c)/2 for all n.

Then we claim that tn − τn →∞ as n→∞, wherein we have set

τn := sup{t ≥ t′n | u(ct, t) ≥ γ1(c)} with γ1(c) := µ1(c)/2.

Indeed, by taking the limit and using c > s > s∗2, we have due to Theorem 1.1 (up to

extraction of a subsequence)

(un, vn, wn)(x+ cτn, t+ τn)→ (u∞, 0, w∞)(x, t)

locally uniformly in R× R, where (u∞, 0, w∞) ∈ ω[c1,c2].

If the sequence {tn − τn} has a bounded subsequence then, up to a subsequence, one may

assume that tn − τn → t0 as n→∞ for some t0 ∈ R. Moreover, we have

u∞(ct0, t0) = lim
n→∞

u(c(tn − τn) + cτn, (tn − τn) + τn) = lim
n→∞

u(ctn, tn) = 0,

by (3.11). It then follows from the strong maximum principle that u∞ ≡ 0. This is a

contradiction to u∞(0, 0) = γ1(c), since u(cτn, τn) = γ1(c) for all n. Hence tn − τn → ∞ as

n→∞.

Furthermore, since

u(ct, t) ≤ γ1(c), ∀ t ∈ (τn, tn), ∀n ≥ 0,

or equivalently

u(ct+ cτn, t+ τn) ≤ γ1(c), ∀ t ∈ (0, tn − τn), ∀n ≥ 0,

and since tn − τn →∞ as n→∞ we obtain by letting n→∞ that

(3.12) u∞(ct, t) ≤ γ1(c) for all t ≥ 0.

However, as already observed, (u∞, 0, w∞) ∈ ω[c1,c2] with u∞ 6= 0 so that (3.12) contradicts

(3.5) and this completes the proof of the lemma. �

Now we show the uniform spreading of the fast prey u as follows.
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Proposition 3.3. Suppose that s ∈ (s∗2, s
∗). Then for any ε ∈ (0, (s∗ − s)/2) there is a

positive constant κ1 = κ1(ε) such that

(3.13) lim inf
t→∞

{
inf

(s+ε)t≤x≤(s∗−ε)t
u(x, t)

}
≥ κ1.

Proof. Fix ε ∈ (0, (s∗−s)/2) and set c1 = s+ε and c2 = s∗−ε. Consider the shifted function

(û, v̂, ŵ)(x, t) = (u, v, w)(x+ c1t, t).

By contradiction, we assume that there exist c̃ ∈ [0, c2 − c1) and a sequence {(ck, tk)} with

ck ∈ [0, c2 − c1) such that ck → c̃, tk →∞ as k →∞, and

(3.14) û(cktk, tk) = u(cktk + c1tk, tk)→ 0 as k →∞.

Next, define the sequence {t′k} by

t′k :=
cktk
c2 − c1

,

so that we have t′k < tk. One may observe that t′k →∞ as k →∞. Indeed, suppose that one

has (at least along a subsequence) cktk → x∞ as k →∞ for some x∞ ∈ [0,∞). Consider the

sequence of functions (uk, vk, wk)(x, t) = (u, v, w)(x + c1tk, t + tk) that converges (possibly

along a subsequence) to (u∞, v∞, w∞) ∈ ω[c1,c2]. Then, due to (3.14),

u∞(x∞, 0) = lim
k→∞

uk(cktk, 0) = lim
k→∞

u(cktk + c1tk, tk) = 0.

The strong maximum principle gives that u∞ ≡ 0. On the other hand, from Lemma 3.2 one

has

u(c1tk, tk) ≥
3µ2(c1)

4
, ∀ k � 1,

which implies that u∞(0, 0) ≥ µ2(c1)/2 > 0, a contradiction. This proves that cktk →∞, or

equivalently t′k →∞ as k →∞.

Now we observe from Lemma 3.2 that

u(c2t
′
k, t
′
k) ≥ µ2(c2)/2 for all k large enough.

This rewrites as

u(c1t
′
k + (c2 − c1)t′k, t

′
k) = u(c1t

′
k + cktk, t

′
k) = û(cktk, t

′
k) ≥ µ2(c2)/2 for all k � 1.

Then let us introduce

τk := sup{t ≥ t′k | û(cktk, t) ≥ γ0} with γ0 := min{µ2(c2), µ1(c1)}/2.

Note that τk < tk for all large k. We claim that tk − τk → ∞ as k → ∞. Indeed, to see

this, we assume by contradiction that (at least for a subsequence) tk − τk → t0 as k → ∞
for some t0 ∈ R. Consider the sequence of functions

(uk, vk, wk)(x, t) := (u, v, w)(x+ c1tk + cktk, t+ tk)→ (u∞, v∞, w∞)(x, t).

Then, by (3.14), u∞(0, 0) = 0 and so u∞ ≡ 0 due to the strong maximum principle. On the

other hand, due to the definition of τk (together with (3.14)) one also has

uk(c1(τk − tk), τk − tk) = û(cktk, τk) = γ0 for all k � 1.
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This yields, letting k →∞,

u∞(−c1t0,−t0) = γ0 > 0,

a contradiction with u∞ ≡ 0. This proves that tn − τn →∞ as n→∞.

Finally, to complete the proof of the proposition, note that for all k large enough one has

(3.15) û(cktk, t
′ + τk) ≤ û(cktk, τk) = γ0, ∀t′ ∈ [0, tk − τk].

Consider the sequence of functions

(uk, vk, wk)(x, t) := (u, v, w)(x+ c1τk + cktk, t
′ + τk),

and possibly along a subsequence, one may assume that

(uk, vk, wk)(x, t)→ (u∞, v∞, w∞)(x, t) locally uniformly for (x, t) ∈ R2 as k →∞.

Now let us observe that (3.15) coupled with tk − τk →∞ as k →∞ ensures that

(3.16) u∞(0, 0) = γ0 and u∞(c1t
′, t′) ≤ γ0, ∀t′ ≥ 0.

To reach a contradiction, let us further note that for all k one has

c1τk ≤ c1τk + cktk = c1τk + (c2 − c1)t′k ≤ c1τk + (c2 − c1)τk ≤ c2τk,

so that (u∞, v∞, w∞) ∈ ω[c1,c2] together with u∞ 6= 0. Hence Lemma 3.1 (see (3.5)) ensures

that

lim sup
t→∞

u∞(c1t, t) ≥ µ1(c1) > γ0,

a contradiction with (3.16), that completes the proof of the proposition. �

Remark 3.1. From Proposition 3.3, we obtain an important lower estimate for the functions

in ω[c1,c2] with s∗2 < s < c1 < c2 < s∗. More precisely, fix c1 < c2 and ε > 0 small enough

such that

s+ ε < c1 and c2 < s∗ − ε,
then for all (ũ, ṽ, w̃) ∈ ω[c1,c2] one has:

ṽ = 0 and ũ ≥ κ1(ε),

where κ1(ε) > 0 is the constant provided in Proposition 3.3.

Recall s∗∗ = min{s∗1, s∗∗∗3 } < s∗ and s∗∗∗3 = 2
√
d3r3(b− 1). Assume now s∗2 < s∗∗.

For the predator, we first derive the following weak pointwise spreading property.

Lemma 3.4. Assume that s ∈ (s∗2, s∗∗) and let ε > 0 small enough such that

s+ ε < s∗∗ − ε.

Set c1 := s + ε and c2 = s∗∗ − ε. Then for any c ∈ [c1, c2] there is a positive constant

µ3(c) = µε3(c) such that

lim sup
t→∞

w(ct, t) ≥ µ3(c),

and for all (ũ, ṽ, w̃) ∈ ω[c1,c2] with w̃ 6= 0

lim sup
t→∞

w̃(ct, t) ≥ µ3(c).
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Proof. As before, we only prove the second statement of the lemma. The proof for the

solution itself follows from the same arguments.

Let c ∈ [c1, c2] be given. By contradiction, we assume that there exist a sequence {tn}
with limn→∞ tn =∞ and a sequence {(ũn, ṽn, w̃n)} ⊂ ω[c1,c2] such that

w̃n 6= 0, ∀n, and lim
n→+∞

sup
t≥tn

w̃n(ct, t) = 0.

By passing to the limit as n→∞, and applying the strong maximum principle, we have

(3.17) lim sup
n→∞

{ sup
t≥tn,|x−ct|≤R

w̃n(x, t)} = 0

for any R > 0 (as in the proof of Lemma 3.1). Then we claim

(3.18) lim sup
n→∞

{ inf
t≥tn,|x−ct|≤R

ũn(x, t)} = 1

for any R > 0.

To this aim, for contradiction, we assume that there is a sequence {(xn, t′n)} with t′n ≥ tn
and xn ∈ [ct′n−R, ct′n+R] such that lim supn→∞ ũn(xn, t

′
n) < 1. Then, by standard parabolic

estimates and extracting a subsequence, we have that (ũn, ṽn, w̃n)(x + xn, t + t′n) converges

to (u∞, v∞, w∞) as n→∞. According to Remark 3.1, one has

ṽn = 0 and ũn ≥ κ1(ε/2) for all n,

so that

v∞ = 0 and u∞ ≥ κ1(ε/2).

In addition, since w∞(0, t) = 0 for all t > 0, by the strong maximum principle we see that

w∞ ≡ 0. Hence u∞ satisfies{
(u∞)t = d1(u∞)xx + r1u∞(1− u∞), (x, t) ∈ R× R,
inf(x,t)∈R2 u∞(x, t) ≥ κ1(ε/2) > 0.

This implies that u∞ ≡ 1, a contradiction to u∞(0, 0) < 1. Hence (3.18) is proved.

Now, for any small δ ∈ (0, (b− 1)/2) and large R > 0, we have

(w̃n)t ≥ d3(w̃n)xx + r3(b− 1− 2δ)w̃n, |x− ct| ≤ R, t ≥ tn,

for n large enough. Proceed as in the proof of Lemma 3.1, using c < 2
√
d3r3(b− 1), we

reach a contradiction to (3.17). The lemma is thus proved. �

Next, we derive the pointwise spreading property of the predator.

Lemma 3.5. Assume that s ∈ (s∗2, s∗∗). Then for any c ∈ (s, s∗∗) there exists µ4(c) > 0 such

that the solution (u, v, w) satisfies

lim inf
t→∞

w(ct, t) ≥ µ4(c).
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Proof. Fix c ∈ (s, s∗∗) and let us proceed by contradiction as in the proof of Lemma 3.2. Fix

ε > 0 small enough such that c ∈ [s + ε, s∗∗ − ε]. Then as in the proof of Lemma 3.2 there

exists an entire solution (u∞, 0, w∞) ∈ ω[s+ε,s∗∗−ε] of (3.1)-(3.3) such that

(3.19) w∞(0, 0) =
µ3(c)

2
, w∞(ct, t) ≤ µ3(c)

2
∀t ≥ 0,

so that w∞ 6= 0 and the second condition provides a contradiction with Lemma 3.4. Thus

the lemma follows. �

The last step is to show the uniform spreading of the predator w.

Proposition 3.6. Suppose that s ∈ (s∗2, s∗∗). Then for any ε ∈ (0, (s∗∗ − s)/2) there is a

positive constant κ2 = κ2(ε) such that the solution (u, v, w) satisfies

(3.20) lim inf
t→+∞

{
inf

(s+ε)t≤x≤(s∗∗−ε)t
w(x, t)

}
≥ κ2.

Proof. The proof is exactly the same as that of Proposition 3.3, using Lemma 3.5 instead of

Lemma 3.2. We omit it safely. �

Proof of Theorem 1.4. Note that v tends to zero uniformly on R as t → ∞, since s > s∗2.

Along with Propositions 3.3 and 3.6, the theorem follows by a similar argument to the proof

of [10, Theorem 2.7]. We also omit the details here. �

Remark 3.2. From the above discussions, it is easy to see that [10, Theorem 2.7] holds for

the system {
ut = d1uxx + r1u[1 + α(x− st)− u− aw],

vt = d2vxx + r2v[−1 + α(x− st) + bu− v],

in which the predator is directly affected by the shifting environment.

3.3. Spreading to Ec.

We assume that s∗3 < s∗∗1 , s∗3 < s∗∗2 and s ∈ (s∗3, s
∗∗), where s∗∗ = min{s∗∗1 , s∗∗2 }.

To prove Theorem 1.5, we first consider the following competition system

(3.21)


ut = d1uxx + r1u[1 + α(x− st)− u− hv], x ∈ R, t > 0,

vt = d2vxx + r2v[1 + α(x− st)− ku− v], x ∈ R, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R.

Recall the following spreading theorem on (3.21) from [30] (see also [34, Theorem 2.7] when

r1 = r2).

Proposition 3.7. Let (u, v) be a solution of (3.21) with initial data (u0, v0) ∈ X1×X1 such

that u0 6= 0 and v0 6= 0. Then for any s ∈ (0, s∗∗) we have

lim
t→∞

{
sup

(s+ε)t≤x≤(s∗∗−ε)t

[
|u(x, t)− uc|+ |v(x, t)− vc|

]}
= 0
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for all ε ∈ (0, (s∗∗ − s)/2).

Proof of Theorem 1.5. Since s > s∗3, w tends to zero uniformly on R as t → ∞. Given

δ ∈ (0,min{1− h, 1− k}). There exists T � 1 such that aw(x, t) ≤ δ for all x ∈ R, t ≥ T .

Let V = 1− v. Then (u, V ) satisfies

ut = d1uxx + r1u[1− h+ α(x− st)− u+ hV − aw], x ∈ R, t ≥ T,

Vt = d2Vxx + r2(1− V )[−α(x− st) + ku− V + aw], x ∈ R, t ≥ T.

Hence

ut ≤ d1uxx + r1u[1− h+ α(x− st)− u+ hV ], x ∈ R, t ≥ T,

Vt ≤ d2Vxx + r2(1− V )[δ − α(x− st) + ku− V ], x ∈ R, t ≥ T,

It follows from the comparison principle for cooperative systems that u(x, t) ≤ u(x, t) and

V (x, t) ≤ V (x, t) for x ∈ R, t ≥ T , where (u, V ) is the solution of

(3.22)


ut = d1uxx + r1u[1− h+ α(x− st)− u+ hV ], x ∈ R, t ≥ T,

V t = d2V xx + r2(1− V )[δ − α(x− st) + ku− V ], x ∈ R, t ≥ T,

u(x, T ) = u(x, T ), V (x, T ) = 1− v(x, T ), x ∈ R.

Set v = 1− V . Then it follows from (3.22) that (u, v) satisfies
ut = d1uxx + r1u[1 + α(x− st)− u− hv], x ∈ R, t ≥ T,

vt = d2vxx + r2v[1− δ + α(x− st)− ku− v], x ∈ R, t ≥ T,

u(x, T ) = u(x, T ), v(x, T ) = v(x, T ), x ∈ R.

Since u0 6≡ 0 and v0 6≡ 0, both u(x, T ) and v(x, T ) are positive by the strong maximum

principle. It follows from Proposition 3.7 that for any s ∈ (s∗3, s
∗∗
δ ),

s∗∗δ := min{s∗∗1 , 2
√
d2r2(1− k − δ)},

we have

(3.23) lim
t→∞

{
sup

(s+ε/2)t≤x≤(s∗∗δ −ε/2)t

[
|u(x, t)− ūc|+ |v(x, t)− v̄c|

]}
= 0

for all ε ∈ (0, (s∗∗δ − s)), where

ūc :=
1 + hδ − h

1− hk
, v̄c :=

1− k − δ
1− hk

.

Similarly, u(x, t) ≥ u(x, t) and V (x, t) ≥ V (x, t) for x ∈ R, t ≥ T , where (u, V ) is the

solution of

ut = d1uxx + r1u[1− h− δ + α(x− st)− u+ hV ], x ∈ R, t ≥ T,

V t = d2V xx + r2(1− V )[−α(x− st) + ku− V ], x ∈ R, t ≥ T,

u(x, T ) = u(x, T ), V (x, T ) = 1− v(x, T ), x ∈ R.
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Set v = 1− V . Then (u, v) satisfies
ut = d1uxx + r1u[1− δ + α(x− st)− u− hv], x ∈ R, t ≥ T,

vt = d2vxx + r2v[1 + α(x− st)− ku− v], x ∈ R, t ≥ T,

u(x, T ) = u(x, T ), v(x, T ) = v(x, T ), x ∈ R.

It follows from Proposition 3.7 again that for any s ∈ (s∗3, s
δ
∗∗),

sδ∗∗ := min{2
√
d1r1(1− h− δ), s∗∗2 },

we have

(3.24) lim
t→∞

{
sup

(s+ε/2)t≤x≤(sδ∗∗−ε/2)t

[
|u(x, t)− ûc|+ |v(x, t)− v̂c|

]}
= 0

for all ε ∈ (0, (sδ∗∗ − s)), where

ûc :=
1− h− δ

1− hk
, v̂c :=

1 + kδ − k
1− hk

.

Finally, using u ≤ u ≤ u and v ≤ v ≤ v in R × [T,∞), it follows from (3.23) and (3.24)

that

(3.25) lim
t→∞

{
sup

(s+ε)t≤x≤(s∗∗−ε)t

[
|u(x, t)− uc|+ |v(x, t)− vc|

]}
= 0

for all ε ∈ (0, (s∗∗ − s)/2), by letting δ ↓ 0, since

(ūc, v̄c)→ (uc, vc), (ûc, v̂c)→ (uc, vc), s
∗∗
δ → s∗∗ and sδ∗∗ → s∗∗ as δ ↓ 0.

Hence Theorem 1.5 is proved. �

3.4. Spreading to E∗.

In the sequel, we let s∗ := min{s∗1, s∗2}.
First, we prove the following lemma on the weak pointwise persistence of u+ v.

Lemma 3.8. Suppose that s < s∗. Then for any c ∈ (s, s∗) there exists ν1(c) > 0 such that

for each (u0, v0, w0) ∈ X1 ×X1 ×X2b−1 with u0 + v0 6= 0 the solution (u, v, w) of (1.1)-(1.3)

satisfies

(3.26) lim sup
t→∞

(u+ v)(ct, t) ≥ ν1(c).

Proof. We assume for contradiction that there are c ∈ (s, s∗), sequences

{(u0n, v0n, w0n)} ⊂ X1 ×X1 ×X2b−1

with u0n + v0n 6= 0 for all n ≥ 0 and {tn} with limn→∞ tn =∞ such that

lim
n→∞

sup
t≥tn

(un + vn)(ct, t) = 0,
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wherein (un, vn, wn) denotes the solution of (1.1)-(1.3) with the initial datum (u0,n, v0,n, w0,n).

Then we have

(3.27) lim
n→∞

sup
t≥tn

un(ct, t) = 0, lim
n→∞

sup
t≥tn

vn(ct, t) = 0.

By the same argument as before, we also obtain that

(3.28) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

un(x, t)} = lim
n→∞
{ sup
|x−ct|≤R,t≥tn

vn(x, t)} = 0, ∀R > 0.

From (3.28), we can further derive that

(3.29) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

wn(x, t)} = 0, ∀R > 0.

Indeed, by the same limiting argument, the limit function w∞ satisfies (using also u∞ =

v∞ ≡ 0)

wt = d3wxx + r3w(−1− w), x ∈ R, t ∈ R.

Since w∞ is nonnegative and bounded, it must be identically zero. Hence (3.29) follows.

To conclude we argue as above by setting for i = 1, 2 and R > 0

λiR :=
c2

4di
+
diπ

2

4R2
, φi(x) := e−cx/(2di) cos

(πx
2R

)
.

Then (λiR, φ
i) satisfies

−diφixx − cφix = λiRφ in (−R,R); φi(±R) = 0.

Since c < s∗i for i = 1, 2, one can find constants 0 < δ � 1 and R� 1 such that

c2/(4di) < λiR < ri(1− 2δ).

With such R, due to (3.28) and (3.29), choose n ≥ 0 large enough such that

sup
t≥tn

sup
|x−ct|≤R

(un + hvn + awn)(x, t) ≤ δ,

sup
t≥tn

sup
|x−ct|≤R

(kun + vn + awn)(x, t) ≤ δ.

Since u0n + v0n 6= 0, either u0n 6= 0 or v0n 6= 0. If u0n 6= 0, then for some constant κ1,n we

have

un(x+ ct, t) ≥ κ1,ne
r1δtφ1(x), |x| ≤ R, t ≥ tn.

This implies that un(ct, t) → ∞ as t → ∞, a contradiction. Similarly, if v0n 6= 0, then for

some constant κ2,n we have

vn(x+ ct, t) ≥ κ2,ne
r2δtφ1(x), |x| ≤ R, t ≥ tn,

and we also reach a contradiction. Hence the lemma is proved. �
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Remark 3.3. It is easy to see that the same argument as in Lemma 3.8 also leads to the

following results: Given any c ∈ [0, s∗) there exists ν̂0(c) > 0 such that for any nontrivial

nonnegative solution (u, v, w) = (u, v, w)(·, t) ∈ X1×X1×X2b−1 with u+v 6= 0 of the system

(3.30)


ut = d1uxx + r1u(1− u− hv − aw),

vt = d2vxx + r2v(1− ku− v − aw),

wt = d3wxx + r3w(−1 + bu+ bv − w),

satisfies

lim sup
t→∞

(u+ v)(ct, t) ≥ ν̂0(c).

Next, we prove the pointwise persistence for u+ v.

Lemma 3.9. Assume that s < s∗. Let (u0, v0, w0) ∈ X1 × X1 × X2b−1 be a given initial

data with u0 + v0 6= 0. Then for any c ∈ (s, s∗) there exists ν2(c) > 0 such that the solution

(u, v, w) of (1.1)-(1.3) starting from (u0, v0, w0) satisfies

(3.31) lim inf
t→∞

(u+ v)(ct, t) ≥ ν2(c).

Proof. Again, proceed by a contradiction. Assume that there is a sequence {tn} with tn →∞
as n→∞ such that the solution (u, v, w) satisfies

lim
n→∞

(u+ v)(ctn, tn) = 0.

This implies that

(3.32) lim
n→∞

u(ctn, tn) = lim
n→∞

v(ctn, tn) = 0.

Since u0 + v0 6= 0, by using (3.26) we can choose a sequence {t′n} with t′n < tn and t′n →∞
such that

(u+ v)(ct′nt
′
n) ≥ ν1(c)/2 for all n ≥ 0.

Next, define

τn := sup{t ≥ t′n | (u+ v)(ct, t) ≥ ρ1}, with ρ1 := min{ν1(c), ν̂0(c)}/2.

Note that for n large enough one has τn < tn and (u+v)(cτn, τn) = ρ1. It also follows from a

limiting argument and the strong maximum principle that tn − τn →∞ as n→∞. Indeed,

by taking the limit, we have (up to extraction of a subsequence)

(u, v, w)(x+ cτn, t+ τn)→ (u∞, v∞, w∞)(x, t)

locally uniformly in R×R, where (u∞, v∞, w∞) is an entire solution of system (3.30). If (up

to a subsequence) tn − τn → t0 as n→∞ for some t0 ∈ R, then

u∞(ct0, t0) = lim
n→∞

u(c(tn − τn) + cτn, (tn − τn) + τn) = lim
n→∞

u(ctn, tn) = 0,

by (3.32). It then follows from the strong maximum principle that u∞ ≡ 0. Similarly, we

have v∞ ≡ 0. This is a contradiction to (u∞ + v∞)(0, 0) = ρ1, since (u+ v)(cτn, τn) = ρ1 for

all n. Hence tn − τn →∞ as n→∞.
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Furthermore, since

(u+ v)(cτn, τn) = ρ1 and (u+ v)(ct, t) ≤ ρ1, ∀ t ∈ (τn, tn),

we obtain

(3.33) (u∞ + v∞)(0, 0) = ρ1 and (u∞ + v∞)(ct, t) ≤ ρ1 for all t ≥ 0,

due to tn − τn → ∞ as n → ∞. On the other hand note that (u∞, v∞, w∞) is a solution

of (3.30) in X1 × X1 × X2b−1 with u∞ + v∞ 6= 0. Hence the second condition in (3.33)

contradicts Remark 3.3. This completes the proof of the lemma. �

With Lemma 3.9, we can show the uniform persistence of u+ v.

Proposition 3.10. Assume that s < s∗. Let (u0, v0, w0) ∈ X1×X1×X2b−1 be a given initial

data with u0 + v0 6= 0. Then the solution (u, v, w) of (1.1)-(1.3) starting from (u0, v0, w0)

satisfies for any ε ∈ (0, (s∗ − s)/2) there is a positive constant θε such that

(3.34) lim inf
t→∞

{
inf

(s+ε)t≤x≤(s∗−ε)t
(u+ v)(x, t)

}
≥ θε.

Proof. Again to prove this proposition we argue by contradiction by assuming that for some

given ε ∈ (0, (s∗ − s)/2), there is a sequence {(xn, tn)} such that tn →∞ as n→∞,

(3.35) xn ∈ [(s+ ε)tn, (s∗ − ε)tn], ∀n ≥ 0, (u+ v)(xn, tn)→ 0 as n→∞.

First, by Lemma 3.9, we have

lim inf
t→∞

(u+ v)(c1t, t) ≥ ν2(c1), with c1 := s∗ − ε/2.

Then, for the sequence {t′n := xn/c1}, we have t′n < tn, t′n →∞ as n→∞ and

(3.36) (u+ v)(xn, t
′
n) = (u+ v)(c1t

′
n, t
′
n) ≥ ν2(c1)/2 for all n� 1.

Now introduce for all n

τn := sup{t ≥ t′n | (u+ v)(c1t
′
n, t) ≥ ρ2},

where ρ2 is given by

ρ2 := min{ν2(c1), ν̂0(0)}/2.

Here ν̂0(0) is defined in Remark 3.3. Note that τn < tn and (u+v)(c1t
′
n, τn) = ρ2 for all large

n, due to (3.35).

Claim that tn − τn →∞ as n→∞. For this, we let

(3.37) (u∞, v∞, w∞)(x, t) := lim
n→∞

(un, vn, wn)(x+ c1t
′
n, t+ τn).

Note that

x+ c1t
′
n − s(t+ τn) = x− st+ xn − sτn

≥ x− st+ (s+ ε)tn − sτn ≥ x− st+ εtn →∞ as n→∞.
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Hence (u∞, v∞, w∞) is a nonnegative bounded entire solution of (3.30). If, for a subsequence,

tn − τn → t0 as n→∞ for some t0 ∈ R, then

(u∞ + v∞)(0, t0) = lim
n→∞

(un + vn)(c1t
′
n, (tn − τn) + τn) = lim

n→∞
(un + vn)(xn, tn) = 0,

by (3.35). Hence u∞(0, t0) = v∞(0, t0) = 0. It follows from the strong maximum principle

that u∞ = v∞ ≡ 0, a contradiction to

(u∞ + v∞)(0, 0) = lim
n→∞

(u+ v)(c1t
′
n, τn) = ρ2 > 0.

This shows that tn − τn → ∞ as n → ∞. Hence we obtain that (u∞, v∞, w∞) is a solution

of (3.30) with (u∞ + v∞)(0, 0) = ρ2 6= 0 and

(u∞ + v∞)(0, t) ≤ ρ2 ≤ ν̂0(0)/2, ∀ t ≥ 0.

This contradicts Remark 3.3 and completes the proof of the proposition. �

We now investigate the spreading for the predator w. Here we fix an initial data (u0, v0, w0)

in X1 ×X1 ×X2b−1 with

u0 6= 0, v0 6= 0 and w0 6= 0.

We denote by (u, v, w) the solution of (1.1)-(1.3) starting at time t = 0 from (u0, v0, w0). As

before for s < c1 < c2 we define ω[c1,c2] as the set of the functions (ũ, ṽ, w̃) : R2 → R3 such

that there exists {(xn, tn)} with

c1tn ≤ xn ≤ c2tn, ∀n, and tn →∞ as n→∞,

such that

(ũ, ṽ, w̃)(x, t) = lim
n→∞

(u, v, w)(x+ xn, t+ tn) locally uniformly for (x, t) ∈ R2.

Moreover, according to Proposition 3.10, when s < s∗ for each ε ∈ (0, (s∗ − s)/2) we have

for any (ũ, ṽ, w̃) ∈ ω[s+ε,s∗−ε]

(3.38) (ũ+ ṽ)(x, t) ≥ θε, ∀(x, t) ∈ R2.

Here the constant θε is provided by Proposition 3.10.

We now derive the following lemma on the weak pointwise persistence of w. Recall s∗∗ =

min{s∗∗1 , s∗∗2 } < s∗.

Lemma 3.11. Suppose that s < s̄ := min{s∗∗, s∗∗∗3 }. Fix ε ∈ (0, s̄− s)/2) and let c1 = s+ ε,

c2 = s̄− ε. Then for any c ∈ [c1, c2] there is a constant ν3(c) > 0 such that

(3.39) lim sup
t→∞

w(ct, t) ≥ ν3(c),

and for any solution (ũ, ṽ, w̃) ∈ ω[c1,c2] with w̃ 6= 0 one has

(3.40) lim sup
t→∞

w̃(ct, t) ≥ ν3(c).
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Proof. Here again we prove (3.40) while the proof of (3.39) for the solution itself is similar.

To prove (3.40) we argue by contradiction and assume that for some c ∈ [c1, c2] there exist

a sequence {tn} with limn→∞ tn = ∞ and a sequence {(ũn, ṽn, w̃n)} ∈ ω[c1,c2] with w̃n 6= 0

such that

(3.41) lim
n→+∞

sup
t≥tn

w̃n(ct, t) = 0.

The same argument as before leads

(3.42) lim sup
n→∞

{ sup
t≥tn,|x−ct|≤R

w̃n(x, t)} = 0, ∀R > 0.

Next, fix η > 0 small enough and R > 0 large enough. Then, using (3.42), for all n � 1

one has

w̃n(x, t) ≤ η, ∀t ≥ tn, |x− ct| ≤ R.

Since u ≤ 1 and v ≤ 1, (ũn, ṽn) satisfies

(ũn)t(x, t) ≥ d1(ũn)xx(x, t) + r1ũn(x, t)[1− (h+ aη)− ũn(x, t)], |x− ct| ≤ R, t > tn,

(ṽn)t(x, t) ≥ d2(ṽn)xx(x, t) + r2ṽn(x, t)[1− (k + aη)− ṽn(x, t)], |x− ct| ≤ R, t > tn.

We also have

(ũn + ṽn)(x, t) ≥ θε > 0 for all (x, t) ∈ R2 and n ≥ 0.

As a consequence, since c < s∗∗1 , if ũn 6= 0, then using the same arguments as for [14, Lemma

5.2] one has

lim inf
t→∞

ũn(x+ ct, t) ≥ q1
η,R(x), ∀ |x| ≤ R,

where q1
η,R denotes a positive solution of the problem

d1(q1
η,R)xx + c(q1

η,R)x + r1q
1
η,R[1− (h+ aη)− q1

η,R] = 0, x ∈ (−R,R), q1
η,R(±R) = 0.

Note that this is true when R > 0 is large enough and η > 0 small enough so that c <

2
√
d1r1(1− (h+ aη)). Moreover, we have

q1
η,R(x)→ 1− h as η → 0, R→∞, locally uniformly in R.

As a consequence, one obtains that

lim inf
t→∞

ũn(x+ ct, t) ≥ 1− h, ∀x ∈ R.

Similarly, since c < s∗∗2 , either ṽn = 0 or ṽn 6= 0 and

lim inf
t→∞

ṽn(x+ ct, t) ≥ 1− k, ∀x ∈ R.

As a consequence of [20] (see also [13]), we obtain

(1) If ṽn 6= 0 and ũn = 0, then

ṽn(x+ ct, t)→ 1 locally uniformly.

(2) If ũn 6= 0 and ṽn = 0, then

ũn(x+ ct, t)→ 1 locally uniformly.
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(3) If ũn 6= 0 and ṽn 6= 0, then

(ũn, ṽn)(x+ ct, t)→ (uc, vc) locally uniformly.

In any case, for all R > 0 there exists a sequence {t′n} with t′n ≥ tn for all n ≥ 0 such that

(3.43) lim sup
n→∞

{
inf
t≥t′n

inf
|x−ct|≤R

(ũn + ṽn)(x, t)

}
≥ min{uc + vc, 1} = 1.

Using (3.43), we complete the proof of the result. Indeed, for any small δ > 0 and large

R > 0, the function w̃n satisfies

(w̃n)t ≥ d3(w̃n)xx + r3(b− 1− δ)w̃n, |x− ct| ≤ R, t ≥ t′n,

for any n large enough. As before, since w̃n 6= 0 and using s < c < s∗∗∗3 , we construct for

R� 1 an unbounded sub-solution and reach a contradiction.

Thereby the lemma is proved. �

With Lemma 3.11, a similar argument to the proof of Lemma 3.2 we can prove the following

lemma. We omit its proof.

Lemma 3.12. Suppose that s < s̄. Then for any c ∈ (s, s̄) there is a constant ν4(c) > 0

such that

(3.44) lim inf
t→∞

w(ct, t) ≥ ν4(c).

Then, similar to that of Proposition 3.3, we have the following uniform persistence of w.

Proposition 3.13. Suppose that s < s̄. Then for any ε ∈ (0, (s̄ − s)/2) there is a positive

constant θε1 such that the solution (u, v, w) satisfies

(3.45) lim inf
t→∞

{
inf

(s+ε)t≤x≤(s̄−ε)t
w(x, t)

}
≥ θε1.

Now, we come to the question of the persistence of the fast prey. Here recall that (u, v, w)

is a fixed solution of (1.1)-(1.3) equipped with the initial data (u0, v0, w0) with u0 6= 0, v0 6= 0

and w0 6= 0.

Lemma 3.14. Set

(3.46) s1 := min{s∗∗∗1 , s̄},

and suppose that s < s1. Fix s < c1 < c2 < s1. Then for each c ∈ [c1, c2] there exists

ν5(c) > 0 such that the solution (u, v, w) satisfies

(3.47) lim sup
t→∞

u(ct, t) ≥ ν5(c),

and for any (ũ, ṽ, w̃) ∈ ω[c1,c2] with ũ 6= 0

(3.48) lim sup
t→∞

ũ(ct, t) ≥ ν5(c).
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Proof. Fix ε > 0 small such that

s+ ε < c1 < c2 < s1 − ε ≤ s̄− ε.

First note that Propositions 3.10 and 3.13 ensure that for all (ũ, ṽ, w̃) ∈ ω[c1,c2] one has

(3.49) ũ+ ṽ ≥ θε, w̃ ≥ θε1.

Now as before to prove the lemma we only prove (3.48). We argue by contradiction assuming

that there are sequences {(ũn, ṽn, w̃n)} ⊂ ω[c1,c2] with ũn 6= 0 for all n ≥ 0 and {tn} with

limn→∞ tn =∞ such that

(3.50) lim
n→∞

sup
t≥tn

ũn(ct, t) = 0,

for some given c ∈ [c1, c2]. Then, as before, we have

(3.51) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

ũn(x, t)} = 0, ∀R > 0.

From (3.51), we can further derive that

(3.52) lim
n→∞
{ sup
|x−ct|≤R,t≥tn

[|ṽn(x, t)− up|+ |w̃n(x, t)− wp|]} = 0, ∀R > 0.

Indeed, by a contradiction argument, assume that (3.52) does not hold for some R > 0.

Then there is a sequence {(xn, τn)} with τn ≥ tn and |xn − cτn| ≤ R for all n such that

(3.53) |ṽn(xn, τn)− up|+ |w̃n(xn, τn)− wp| ≥ δ, ∀n,

for some δ > 0. Let

(u∞, v∞, w∞)(x, t) := lim
n→∞

(ũn, ṽn, w̃n)(x+ xn, t+ τn), x, t ∈ R.

Then u∞ ≡ 0 and due to (3.49), (v∞, w∞) satisfies

v∞(x, t) ≥ θε, w∞(x, t) ≥ θε1, ∀(x, t) ∈ R2,

and it is a nonnegative bounded entire solution of

(3.54)

{
vt = d2vxx + r2v(1− v − aw),

wt = d3wxx + r3w(−1 + bv − w).

Hence [10, Theorem 2.7] ensures that (v∞, w∞) ≡ (up, wp) a contradiction with (3.53). Hence

(3.52) is proved.

Now, it follows from (3.51) and (3.52) that there are positive constants δ small and R

large such that the positive function ũn satisfies

(ũn)t ≥ d1(ũn)xx + r1(1− hup − awp − δ)ũn for x ∈ (ct−R, ct+R), t ≥ tn,

for large enough n. The same argument as before leads to a contradiction, using s < c < s∗∗∗1 .

Hence the lemma is proved. �

With Lemma 3.14, we show the pointwise persistence of u component.



THREE SPECIES IN SHIFTING ENVIRONMENT 25

Lemma 3.15. Recalling (3.46), suppose that s < s1. Let ε > 0 be given such that ε <

(s1 − s)/2. For any c ∈ [s + ε, s1 − ε] there exists ν6(c) = νε6(c) > 0 such that the solution

(u, v, w) satisfies

lim inf
t→∞

u(ct, t) ≥ ν6(c).

Proof. Again, proceed by a contradiction. Assume that there exist c ∈ [c1, c2] with c1 = s+ε

and c2 = s1 − ε and a sequence {tn} with tn →∞ as n→∞ such that

(3.55) lim
n→∞

u(ctn, tn) = 0.

By (3.47), we can choose a sequence {t′n} with t′n < tn and t′n →∞ such that

u(ct′nt
′
n) ≥ ν5(c)/2 for all n.

Recalling the definition of ν̂0(c) in Remark 3.3, we set

τn := sup{t ≥ t′n | u(ct, t) ≥ ρ5}, with ρ5 := min{ν5(c), ν̂0(c)}/2.

As above, it follows from a limiting argument and a strong maximum principle that tn−τn →
∞ as n→∞.

Now, let

(u∞, v∞, w∞)(x, t) := lim
n→∞

(un, vn, wn)(x+ cτn, t+ τn), (x, t) ∈ R2.

Note that (u∞, v∞, w∞) ∈ ω[c1,c2] with

u∞(0, 0) = ρ5 > 0 and u∞(ct, t) ≤ ρ5 for all t ≥ 0.

that contradicts Lemma 3.14 and proves the lemma. �

Then, as before, we obtain the uniform persistence of prey u as follows.

Proposition 3.16. Suppose that s < s1. Then for any ε ∈ (0, (s1− s)/2) there is a positive

constant θε2 such that the solution (u, v, w) satisfies

lim inf
t→∞

{
inf

(s+ε)t≤x≤(s1−ε)t
u(x, t)

}
≥ θε2.

Finally, we come to the question of the persistence of the slow prey v. In fact, a similar

argument to that for Lemma 3.14 gives

Lemma 3.17. Set

(3.56) s2 := min{s∗∗∗2 , s̄},

and suppose that s < s2. Fix s < c1 < c2 < s2. Then for each c ∈ [c1, c2] there exist ν7(c) > 0

such that the solution (u, v, w) satisfies

lim sup
t→∞

v(ct, t) ≥ ν7(c),

and for any (ũ, ṽ, w̃) ∈ ω[c1,c2] with ṽ 6= 0 one has

lim sup
t→∞

ṽ(ct, t) ≥ ν7(c).
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Then as before, we obtain the following result.

Lemma 3.18. Recalling (3.56), assume that s < s2. Fix ε ∈ (0, s̄− s)/2) and let c1 = s+ ε,

c2 = s̄ − ε. Then for any c ∈ [c1, c2] there is a constant ν8(c) > 0 such that the solution

(u, v, w) satisfies

lim inf
t→∞

v(ct, t) ≥ ν8(c).

Hence we obtain the following uniform persistence of prey v.

Proposition 3.19. Suppose that s < s2. Then for any ε ∈ (0, (s2− s)/2) there is a positive

constant θε3 > 0 such that the given solution (u, v, w) satisfies

lim inf
t→∞

{
inf

(s+ε)t≤x≤(s2−ε)t
v(x, t)

}
≥ θε3.

Therefore, Theorem 1.6 follows from Propositions 3.13, 3.16 and 3.19, by a similar proof

to that of Theorem 1.4 using a Lyapunov functional approach of [13, Lemma 4.3] and [20,

Theorem 1.1].

4. Some numerical simulations

In this section, we first present some numerical simulations for the spreading dynamics of

system (1.1)-(1.3) described in Theorems 1.3-1.6. The following parameters and functions

are used in our numerical simulations.
u0(x) = v0(x) = w0(x) =

{
0.5 sin(πx), x ∈ [0, 1],

0, otherwise;

α(x− st) = 2
π

arctan 10(x− st)− 1;

r1 = r2 = 1.0; r3 = 1.2; a = 0.5; b = 1.6; h = 0.2; k = 0.8.

The diffusion coefficients will be given for each case in Figures 1-4 which represent the

spreading of species for Theorem 1.3-1.6, respectively.

As we observe from these figures, both Figures 1 and 2 have the same spatial ranges in

(1.10) and (1.11) as stated in Theorems 1.3 and 1.4, respectively. However, the spatial ranges

in Figures 3 and 4 are larger than those in (1.12) and (1.13) stated in Theorems 1.5 and

1.6, respectively. This indicates that the upper bounds of s in Theorems 1.5 and 1.6 are not

optimal. This is an open question to be explored in the future.

Finally, we add a remark on the spreading dynamics when condition α(∞) = 0 in (1.4) is

replaced by α(∞) > 0.

Remark 4.1. In fact, when α0 := α(∞) > 0 in (1.4), since we assume that the predator

cannot survive without any prey, we must have α0 ∈ (0, 1). Then, by setting

ũ = u/(1 + α0), ṽ = v/(1 + α0), w̃ = w/(1 + α0), α̃ = (α(z)− α0)/(1 + α0),

r̃i = (1 + α0)ri, i = 1, 2, 3, γ =
1− α0

1 + α0

,
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Figure 1. Spreading of the fast prey for given parameters {d1 = 1.3, d2 =

0.4, d3 = 0.3, s = 1.8}. The conditions in Theorem 1.3 are satisfied, since

s∗1 ≈ 2.28, s∗2 ≈ 1.26, s∗3 ≈ 1.78.

Figure 2. Spreading of the predator and the fast prey for given parameters

{d1 = 1.3, d2 = 0.1, d3 = 0.6, s = 1.0}. The conditions in Theorem 1.4 are

satisfied, since s∗1 ≈ 2.28, s∗2 ≈ 0.63, s∗∗∗3 ≈ 1.31.

we end up with, after dropping the tilde, the system

ut(x, t) = d1uxx(x, t) + r1u(x, t)[1 + α(x− st)− (u+ hv + aw)(x, t)], x ∈ R, t > 0,

vt(x, t) = d2vxx(x, t) + r2v(x, t)[1 + α(x− st)− (ku+ v + aw)(x, t)], x ∈ R, t > 0,

wt(x, t) = d3wxx(x, t) + r3w(x, t)[−γ + α(x− st) + (bu+ bv − w)(x, t)], x ∈ R, t > 0,

in which α(∞) = 0. Note that γ > 0 and so the predator cannot survive without any prey.

On the other hand, we now assume b > γ to ensure that the predator can survive if there is

enough supply from the preys, namely, u+v > γ/b which is possible since γ/b < 1 (recalling
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Figure 3. Spreading of two preys for given parameters {d1 = 1.3, d2 =

1.8, d3 = 0.1, s = 1.1}. The conditions in Theorem 1.5 are satisfied, since

s∗∗1 ≈ 2.04, s∗∗2 = 1.2, s∗3 ≈ 1.03.
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Figure 4. Spreading of all species for given parameters {d1 = 1.0, d2 =

0.8, d3 = 1.2, s = 0.5}. The conditions in Theorem 1.6 are satisfied, since

s∗∗∗1 ≈ 1.63, s∗∗∗2 ≈ 0.73, s∗∗∗3 ≈ 1.86.

that the maximal carrying capacity of u (or v) is 1). Then the spreading dynamics described

in Theorems 1.1-1.6 hold with the following changes.

(1) The constant equilibria:{
vp = up = 1+aγ

1+ab
, wp = b−γ

1+ab
,

u∗ = (1+aγ)(1−h)
1−hk+ab(2−h−k)

, v∗ = (1+aγ)(1−k)
1−hk+ab(2−h−k)

, w∗ = b(2−h−k)−γ(1−hk)
1−hk+ab(2−h−k)

,

(2) The linear speeds:

s∗3 = 2
√
d3r3(2b− γ), s∗∗3 = 2

√
d3r3[b(uc + vc)− γ], s∗∗∗3 = 2

√
d3r3(b− γ).

(3) The function space X1 ×X1 ×X2b−1 is replaced by X1 ×X1 ×X2b−γ.
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