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Prediction of human looking behavior

using interest-based image representations

Jong-Shenq Guo ∗, Karen Guo ∗, Paul Schrater

Looking behavior allows human to understand and interact with an
enormous amount of information, a capacity challenging to repli-
cate in AI systems. One of the core elements of this work is an effort
to predict scan-paths from a combination of image information and
past looking behavior. The success of this scan-path predication
relies heavily on whether this image information can provide a suf-
ficiently rich representation for prediction. In this paper, we show
that changing representations dramatically simplifies and improves
predictions of looking behavior. We introduce a representation of
looking behavior that centers around interest-regions in images,
defined by natural and collective looking behavior. These regions
(called interest-based regions) can be used to partition images for
semantic labeling and to provide a basis for shared representa-
tion across observers. Without any additional label or image infor-
mation, we achieve highly accurate sequence prediction using this
interest-based image representation.

1. Introduction

It is natural for humans to understand and interact with an enormous
amount of information from the surrounding environment. But it is much
more difficult for computers to process incoming information like humans.
To make a computer more like a human, researchers in Artificial Intelligence
(AI) give a direction to computers that simulate how a human understands
the world, which could lead to the development of new computer technol-
ogy. Specifically, the human visual system is interesting because it receives
a huge amount of visual information through the eyes [17]. And human
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visual attention is influenced by both this incoming visual information and
other stimuli such as environment and each person’s background knowledge.
Humans analyze the incoming scenes over a series of looks, building up useful
representations from outside information and generating high-quality inter-
pretations to create a conscious understanding or reaction to the surrounding
[39].

Yet human vision is influenced by incoming information remains con-
cealed, which is critical for simulating this visual processing procedure by
computers. One of the ways to connect visual information and human knowl-
edge is object categorization. For example, ImageNet [12] is an image dataset
that contains thousands of object classes and is used to train computers to
detect and recognize these objects. And Alexnet [26] is one of the famous
deep neural networks for retrieving information from the dataset and per-
forming well on object detection and recognition tasks. However, humans
consider not only the objects in the image but also the details or relations
among them. The viewers will correspondingly change their eye movements
based on where in the image they are interested in and which part of the
image provides information that can benefit their interpretation. The differ-
ence in scanpath while giving the observer different tasks has been noticed
by Yarbus back in 1967 [42]. Itti et al. [20] provided a model of generat-
ing saliency map by fusing intensity, color, and orientation. The so-called
saliency map is a way to highlight which area is more important to the
human or attracts more attention from human eyes within an image. Based
on the procedure of generating the saliency maps [5], these attention models
can be categorized as bottom-up [20, 18, 16] and top-down [23, 41]. They can
also be stated as stimulus-driven and goal-driven, considering the process of
how they solve their task. With more and more deep learning frameworks
and models being established, most of the state-of-the-art saliency detection
models include a neural network structure and use features learned from
large-scale computer vision deep learning models [29, 27]. The saliency map
also provides an efficient approximate solution to problems related to high-
level visual concepts. For example, the concept of saliency map has been
applied in [8, 14] as a prior probability distribution in object detection. A
similar concept is used for finding the coexistence of specific objects in a
set of images [9], video compression [19], foreground-background separation
[35], and other visual tasks.

Saliency maps deliver a static and spatial distribution of visual atten-
tion, yet the human visual system (HVS) changes dynamically across time.
Modeling visual attention temporally and spatially is much closer to the
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Human looking behavior based on interest-based image representation 3

mechanism of human cognitive behavior while viewing. There are charac-
teristic allocation patterns over time, shared across people and driven by
task domains. Based on the explanation on Wikipedia, ’In computer vision,
a saliency map is an image that highlights the region on which people’s eyes
focus first.’ In addition, the saliency map is regularly colored to represent
the importance of each pixel in a static image. While saliency map models
being established for a couple of years, scanpath modeling has not received
much attention until recent years. Scanpath is defined as a series of fixations
and saccades on an image. Compared to the static saliency map, literature
related to dynamic visual attention prediction is growing within the topic
of scanpath prediction [28].

Scanpath prediction is a problem that focuses on developing methods for
generating eye fixation sequences based on the given image. Starting from
the early 2000s, Lee and Yu [30] introduced an information maximization
framework during the targeted eye movements. Later, Wang et al. [40] pro-
posed a computational model that predicts saccadic eye movement in natural
images. The model generates sequential saliency maps based on integrating
the responses from designed filters applied to each eye movement. The con-
cept of representing the fixation points with the regional or local feature was
used in Jiang et al. ’s approach [21]. They used superpixel, which is a large
unit of representing the element in an image defined in this paper, to indi-
cate fixation points and applied least-squares policy iteration for learning.
In addition to the better performance than the previous models, it is shown
in [21] that the combination and comparison of several features show that
the representation of the image and fixation point takes a significant place
in solving the scanpath prediction problem. On the other hand, with the
growth of deep learning models and the inspiration of human vision in neu-
roscience, neural network structures are applied to achieve both saliency and
scanpath prediction. Kerkouri et al. [25] proposed an end-to-end deep-based
model for predicting the scanpath based on the features of the saliency map
simultaneously generated by their deep model. Assens et al. [3] proposed
Saltinet with a CNN encoder-decoder network. They also came up with
PathGan [2], a model for saliency prediction with a generative adversarial
network (GAN) and LSTM layers. GAN has also been applied to predict
realistic scanpath for the panorama images by Martin et al. [33]. The idea
of using the recurrent neural network (RNN) structure also appeared in the
model proposed by Chen et al. [10] and Sun et al. [38]. The ability of RNN
and LSTM to process temporal relations between data makes them a critical
role while predicting scanpath and strengthening the sequential dependency
between fixations.
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Figure 1: Concept Map of how Humans interpret an Image. Image
understanding, human interest, visual attention and related looking behav-
ior form a system of human viewing process that runs through time and
iteratively updates information of each stage.

This paper proposes a new representation method that centers around
interest regions in images. These regions, which we defined as interest-based
regions, can be used to partition images for semantic labeling and provide
a basis for shared representation across observers to predict their looking
behavior. We first proposed a flow of how humans interpret an image with
their visual attention that is detailed in Figure 1. Given an image, the infor-
mation of the region that the person is viewing is obtained and interpreted
by their brains (Stage 1 to 3). Then the region interpretation would affect
their interest in this image for understanding more contents in the image
(Stage 3 to 4). After deciding what is interesting after knowing this region,
the visual attention would change together and affect the next eye movement
(Stage 4 to 5 and 6 back to 1). We then formulate this looking behavior as a
partial-observable Markov decision process (POMDP) (Figure 2). For recent
studies which formulated the looking behavior as a Markov decision process,
we refer the reader to, e.g., [36, 24, 11, 32]. We define a state space as a belief
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Human looking behavior based on interest-based image representation 5

vector over the set of interest regions, represented by occupancy distribu-
tions over the image. It is shown that using an interest-based image repre-
sentation makes the scan-path prediction problem more feasible. We achieve
highly accurate sequence prediction without any additional label or image
information. These results show that observers use highly structured and
consistent strategies while free-viewing images. This consistency has been
masked by the use of feature-based and object-based image representations
that do not capture the interpretative structure underlying human looking.
Based on their ability to accurately capture looking behavior, interest-based
models can dramatically improve applications that can capitalize on look-
ing behavior, including image captioning, advertisements, and diagnostics.
Specifically, some further details of an application on diagnostics is to be
given in the discussion session.

2. Modeling Human Looking Behavior

Many scanpath prediction methods focus on learning the point-to-point pat-
tern and have a decent prediction accuracy. However, human eyes usually
see the surrounding region of the fixated location. Therefore, it is impor-
tant to learn the transition between regions instead of points. Here we start
with formulating this looking behavior as a decision process on interpreting
an image and introducing our new representation of eye fixation as a belief
state over a set of interest regions.

2.1. Partially Observable Markov Decision Process (POMDP)

The POMDP was first described by Karl Johan Åström in 1965 [4]. It
is normally defined by the tuple (S,A, T, V, Z,O, γ), where

• S is a set of latent states s,

• A is a set of actions a,

• T is the transition probability function T (s′|s, a),

• V : S ×A→ R is the value (reward) function,

• Z is a set of observations z,

• O is the observation probability function O(z|s′, a),
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• γ ∈ [0, 1] is the discount factor.

While the environment is in a state s ∈ S, the agent takes an action a ∈ A,
transitioning the state from s to s′ with probability T (s′|s, a) at each time
step. The agent receives an observation z ∈ Z, related to the state s and the
action a by the observation probability O(z|s, a). In addition, the agent also
receives a reward signal v = V (s, a) and then this process repeats.

Since POMDP contains latent states S that cannot be directly observed,
the agent must makes its decisions with the uncertainty of S. Therefore, it
is common to formulate a POMDP as a belief MDP with a new-defined
observable belief. Belief b is defined as a probability distribution over the
state space S, and b(s) denotes the probability that the environment is in
state s. Following this state transition method, belief MDP can thus be
defined as a tuple (B,A, f,Ψ, γ), where

• B is a set of non-latent beliefs b(s) of states s,

• A is a set of actions a,

• f is a belief state transition function: b′ = f(b, a, z); f ∝ O(z|s′, a)
∑

s∈S T (s
′|s, a)b(s),

• Ψ : B ×A→ R is the reward function on belief states: ψ = Ψ(b, a) =∑
s∈S V (s, a)b(s),

• γ ∈ [0, 1] is the discount factor the same as the original POMDP.

Then the original POMDP is reformulated into a MDP with observable
belief states B. This is the decision process to be used in this work.

Variable Descriptions

xt a set of fixation points: proxy for at
rt inferred region of fixation xt based on interest

regions {k}
dt (local) interpretation of rt belief vector over interest

regions {k}
st (global) current understanding of the given image

based on former beliefs

at movement from the previous fixation point to the
next one

Table 1: Variables that are related to viewing process and are updated across
time.
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Human looking behavior based on interest-based image representation 7

With the above definition, we can then connect some notations in MDP
with fixations and interpretations on an image in table 1. In addition, by the
definition in table 1, we reformulate the procedure described in Figure 1 and
describe the whole iterated image interpretation process of human looking
behavior in Figure 2 with details as following:

Given an image I, the subject was asked to view the image freely, which
means the only goal is to understand the content without answering any
task-oriented questions. While starting viewing the image, the subject may
have their eyes wandering around the image to gain more knowledge of this
image. Let their current fixation point be xt. The interpretation surround-
ing the observation xt is denoted as dt, which is not observable. This local
interpretation around xt provides knowledge for the further understanding
of the whole image. Let the current understanding of the image be st, and
this would then be the (latent) knowledge state that is updating while a new
xt is observed.

In addition to the directly observable fixation sequences {xt}, the observer’s
fixations in an image also give us indirect information about their local inter-
pretation. We treat the problem of estimating the local interpretation as
having two parts. First we infer which annotations are relevant by a prob-
abilistic weighting of the annotated regions intersected by fixation xt. Sec-
ondly, we marginalize the latent interpretation state to focus on prediction
of subsequent belief probability and fixations. By marginalizing the depen-
dency between bt and other variables, we preserve only observable variables
and simplify it to be a temporal-series data analysis problem.

In the next subsection, we introduce interest-based region as the basis
for belief vector of local interpretation of an image.

2.2. Interest-based Regions Representation

In this section, we introduce interest-based region representation to provide
a way to represent the common regions that humans tend to be more inter-
ested in while viewing. Interest-based region (IbR) representation is based on
the collected human eye fixations on images. In addition, IbR can be explic-
itly represented as a probability distribution, which makes an objective way
to describe the subjective idea. Our approach requires human visual atten-
tion data, yet collecting large-scale attention data is always the main reason
for prohibiting the analysis of different aspects and attributions. Huang et
al. introduced an approximation method SALICON to visual attention via
the mouse trace [22] and a crowdsourcing platform to collect large-scale
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attention data. They first applied a Gaussian blur filter on the images from
the MS COCO dataset [31]. Then these images were uploaded to the plat-
form of Amazon Mechanical Turk to collect large-scale mouse-tracking data.
The collected mouse traces on the blurred images can be transformed into
simulated eye movement maps on the images. In this way, the visual atten-
tion map of an image can be approximated from a large amount of subjects’
mouse traces instead of using an eye-tracking machine. From their analysis,
these mouse-tracking resulting attention maps can simulate the same or even
better attention map compared to the one simulated by other saliency detec-
tion algorithms. And thus, the mouse traces can approximate eye movements
and are sufficient to represent human visual attention.

Here in our approach, we first recorded 104 subjects’ mouse traces on
given images with SALICON [22] to simulate their eye-movements. To empha-
size the points that attract people to fix their attention, we came up with a
way to define ”fixation points” from the collected mouse traces. The fixation
points are defined and filtered by the length of time that the mouse stays at
a certain position. We then apply a Gaussian blur filter to fuse all fixation
points in an image and generate the overall visual attention map, or so-called
saliency map. From these saliency maps, we can see that there are always
some brighter regions, which means these regions include significant parts of
fixation points inside and have certain contents or information that attract
most people’s visual attention. However, the definition of these ”attention-
focused” regions remains unclear. Therefore, we propose a clustering method
to generate these informative regions explicitly as follows.

Our method starts with the input of overall fixation points {xj} of an
image j. With the generated saliency map M j , our goal is to find the most
outstanding region centers to separate the fixation points into meaningful
regions. We first use a sliding square window with given width ρ to search
whether the center of this window has the maximum value in M j . If so,
this point is saved as a center reference {rjk} and the window keeps moving
on to the search for the next local maximum value until the window hits
the bounds. With these centers {rjk} being found, we assign each fixation
point x to a certain region by finding the index k with the shortest distance
||x− rjk|| among all possible centers. The fixation point x is then denoted by

xjk. Then the variables of Gaussian mixture model Gj : mean µjk and covari-

ance σjk can be calculated from all fixation points {xjk} assigned to each
region k of image j. We call the resulting regions interest-based regions,
because these regions are not only simply just the clustering results of fixa-
tion points, but also the parts that most subjects decide to focus on while
viewing the image and understanding the contents inside. With these regions
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Figure 2: Formalization of Image Interpretation as a Partially
Observed Decision Process. Graphical schematic of the structure of the
optimal policy for image interpretation. We will use this structure to focus
our policy learning methods.

and the model Gj being generated, we separate all the fixation points into
distinct regions that include major amount of visual attention and mean-
ingful contents. These regions are contextually informative, which has been
used and discussed in [15].

2.3. Gaussian Mixture Posterior as Belief Vector

By having the Gaussian mixture model Gj for each image j, we are able
to assign each fixation point to the closest region. However, instead of having
the one-hot vector as a representation of a fixation point, we would like to
consider a representation method with a continuous property that allows
derivative and reconstruction of the original point. Therefore, we use the
posterior function generated from the normalization between the Gaussian
mixture model Gj and the uniform distribution as background. Let Lj

k(x)
be the likelihood of region k and point x from the model Gj in image j.
We combine Lj

k with the uniform distribution and generate a vector-valued
function H(x) as following:

(2.1) H(x) = [Lj
1(x), L

j
2(x), · · · , L

j
K(x),

1

#pixels
], x ∈ Ij ,
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where K is the number of interest-based regions in image j. Then the pos-
terior can be written as:

(2.2) P (x) = [P1(x), · · · , PK(x), b], Pk(x) =
Lj
k(x)

Ĥ(x)
,

where b, the value of normalized background uniform distribution, and Ĥ(x)
are defined by

b =
1

Ĥ(x)(#pixels)
, Ĥ(x) =

K∑
k=1

Lj
k(x) +

1

#pixels
.

This way, we can reconstruct the fixation point x from the posterior Pk(x) by
giving the posterior maps T j

k for each group k generated from each compo-
nent in Gj . The reconstruction y of a fixation point x based on the posterior
can be formulated as the following:

(2.3) y = argminy

K∏
k=1

(expPk(x)− Tj
k(y))

2.

With the posterior as a representation of each fixation point, we can
flexibly include the relation between these interest-based regions and map
the representation as a belief vector over the interest-based regions. This
way, the posterior not only provides an informative representation way of
fixation points, but also generates the belief state that can be formulated in
the belief MDP described above.

3. Prediction of Human Looking Behavior: Experiments and
Results

In this section, we shall describe our experimental setting and the results
we obtained for the prediction problem of human looking behavior.

3.1. Experimental Setting

Our stimuli images come from the dataset generated by the clinical psy-
chology department [15]. Images of this dataset are collected from both IAPS
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(International Affective Picture System) [7] and other public domain web-
sites with a variety of contents and backgrounds such as face-included or
face-excluded images and clutter or clean background. To generate interest-
based regions and their posterior distributions, we use the eye movement
data collected from 104 subjects by SALICON [22].

We have shown that our image interpretation problem can be formu-
lated as a MDP model in the previous section. Furthermore, by marginal-
izing the states that are not observable, we can treat the MDP model as
a temporal-series data analysis problem (Figure 3). Here we use a stack of
Long Short Term Memory (LSTM) to predict the next state. We use the
historic set of posterior probability {P (xi), i = 1, · · · , w} as the input state
of LSTM for predicting the next state P (xw+1), where w is the length of
look-back posterior. Moreover, in order to evaluate the performance of our
interest-based regions representation, we apply the same temporal model
to object-based representation, which generated from the LabelMe object
segmentation [37] of each image. On the other hand, to be more precise on
evaluation, we considered the evaluation method based on the MIT1003 and
SALICON datasets. MIT1003 is a dataset that contains 1003 images of nat-
ural indoor and outdoor scenes, along with the eye-tracking data collected
from 14 observers. This dataset has been used as a benchmark for saliency
prediction [21]. Yet the temporal relation is kept in the dataset, which makes
it a good benchmark for scanpath prediction. Due to the limitation of com-
putation power of our system, we choose 200 images from the dataset and
run the training process on the data of 01 observers. The prediction of our
trained model is applied to the rest 4 observers. In addition, we also consider
the SALICON dataset, which contains the mouse traces on 10000 images for
training and 5000 images for validation. Since each image has different num-
bers of observers, here we use 70 percent observers for training and the rest
30 percent for testing.

3.2. Results

With the development of scanpath prediction modeling, a few scanpath
comparison metrics are established for comparing the predicted scanpath
with the ground truth [1]. Yet few evaluation metrics for scanpath prediction
are fitted to region-based scanpath. Here we use accuracy for evaluating the
region-match rates of interest-based regions prediction. In addition, we also
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Figure 3: Based on the temporal relation between belief states b and the
action a, the structure of Markov Decision Process here can be simplified to
fit any Recurrent Neural Network type of deep learning structure. In this
figure, IbR stands for Interest-based Region and LSTM is the Long Short
Term Memory.

generated a scanpath by the predicted posterior based on our Gaussian mix-
ture models. This way, we could apply scanpath comparison metrics to com-
pare our results with other methods. Here we consider MultiMatch method
[13] to be the evaluation metric for scanpath prediction. MultiMatch has five
measures: shape, direction, length, position, and duration, to indicate the
similarity between the predicted scanpath and ground truth. Starting with
the simplification step, MultiMatch temporally aligned two simplified scan-
paths so that the following comparison by each metric is well-defined. Multi-
Match Shape considers the vector difference, MultiMatch Length considers
the length difference between the endpoints of two saccade vectors, Mul-
tiMatch Direction measures the angular distance between saccade vectors,
and MultiMatch Position finds the difference in position between aligned
fixations. MultiMatch Duration considers the difference in fixation duration
between aligned fixations. Since our method does not generate a prediction
on the duration, we only consider the first four measurements of MultiMatch.
For object-based representation, we apply multiple metrics described in [6]:
Exact Match Ratio, Precision, Recall, and F1.

We also test on whether the number of previous historical attentions
would affect the prediction. In Table 2, we see that the evaluation result is
really bad without including any previous attention. However, by including
simply one previous attention it exhibits a significant improvement, and
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Metric \Historic Data Length 1 2 10

Accuracy (Int) 0.1393 0.9184 0.9269

Exact Match Ratio (obj) 0.2283 0.7824 0.7992
Precision (obj) 0.2079 0.8166 0.8236
Recall (obj) 0.2678 0.8151 0.8264
F1 (obj) 0.2097 0.8117 0.8215

Table 2: Comparison of evaluation metrics of Interest-based Regions and
Object-based Regions considering different historic data length.

Model MM Shape MM Dir MM Len MM Pos

PathGan[2] 0.9608 0.5698 0.9530 0.8172

Le Meur[34] 0.9505 0.6231 0.9488 0.8675

SALYPATH[25] 0.9659 0.6275 0.9521 0.8965

bR + SALICON 0.9976 0.6411 0.9964 0.9687

IbR + MIT1003 0.9993 0.8245 0.9990 0.9343
Table 3: Overview of the MM (MultiMatch) measurements on different scan-
path prediction methods with SALICON and MIT1003 dataset and as a
reference comparing to our method. IbR stands for Interest-based Region

including more history attentions only provide a slightly improvement on
performance. Our prediction based on interest-based regions outperforms
any approach measurement of object-based regions. This also shows that
our interest-based regions contain meaningful and critical information for
prediction.

In Table 3, we provide a referencing numbers of MM measurements on
SALICON dataset with several state-of-the-art scanpath prediction methods
as an objective reference of how our prediction performs. The MM measure-
ments are also applied to our predicted scanpath from our dataset. From the
results above, we can see that our model not only predict the next interest-
based region accurately based on historical viewing, the model also provide
a good performance on scanpath prediction based on our Gaussian Mixture
Model posterior calculation.
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4. Discussion

In the experiment session, we received a good performance in predicting the
next fixated region by only using interest-based region representation. With
the property of switching attention from region to region, the probability
distribution that describes the current location, either a region or a spe-
cific point, becomes essential considered the simulation of this information
delivering process. Most of the representation methods require an additional
simulation of the probability that describes the representation. Consider this
situation, the Gaussian mixture posterior mentioned in section 2.3 related
to the interest-based region not only provides a way to connect with the
decision process as a belief vector. The Gaussian mixture posterior pro-
vides a probability distribution that well-described the interest-based region
representation. This way, the information in our representation will not be
reduced during the addition simulation step.

Our LSTM learning framework provides a flexible structure for adding
more information, such as additional visual or descriptive features, with
interest-based region representation while training. In addition, our predic-
tion result also provides a potential performance increase by incorporating
more information mentioned above.

Finally, we briefly provide a description of a real-world application on
diagnostic based on the interest-based region representation. We have con-
ducted a study on objective psychological symptom diagnosis. In this study,
a probability classifier is constructed based on the interest-based image
representation to differentiate between bipolar, schizophrenia, and control
groups. The performance of the classification shows that involving interest-
based regions representation as a hidden user state forms a feasible user
model between humans’ eye movement and psychological symptoms. With
the usage of interest-based region representation, the overall system described
in this study provides a noninvasive method for providing numerical mea-
surement and prediction of groups. More precisely, we have collected fixation
data from three groups of people: bipolar, schizophrenia, and health-control
groups viewing the 113 images, which is the same image dataset mentioned
earlier in section 3.1 [15]. The wide variety of these selected images also
has the potential to be a critical factor in diagnosing bipolar, schizophre-
nia, or other psychological symptoms. This is a preliminary sample set since
the data collection from each group of specific psychological symptoms is
extremely difficult. The health-control group contains 5 subjects, whereas
bipolar and schizophrenia have 11 subjects each. Due to the lack of data,
we only consider validating our method at this stage to prove the feasibility
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of recognizing subjects from different groups with sufficient data. The pilot
result indicates that our system has the power to find the variation between
groups and apply it as the critical component to distinguish different groups.
This also indicates the potential applicability of the interest-based region
representation method. We expect that, with more data being involved in
learning the weights and training the classifier, fewer subjects will be left
out, and prediction will be substantially more accessible with less need for
data collection (fewer test images).
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