Home Work 12(Due 12/2)—You must show all your work.

Name:

Student ID No.:

Calculus
Home Work 12

1. Graph the function \(f(t) = (t - 1)^2 \) on \([0, 3]\) and find its average value over the given interval.

Answer:

2. Evaluate the integrals.

 (a) \[\int_{0}^{\pi/3} 2 \sec^2 x \, dx. \]

 (b) \[\int_{\pi/2}^{0} \frac{1 + \cos(2t)}{2} \, dt. \]

 (c) \[\int_{-4}^{4} |x| \, dx. \]

Answer:

 (a)
3. Find the derivatives. \(\frac{d}{dt} \int_{0}^{t^4} \sqrt{u} \, du \).
Answer:

4. Find the derivatives. \(\frac{d}{dx} \int_{0}^{\sin(x)} \frac{dt}{\sqrt{1-t^2}} \), \(-\frac{\pi}{2} < x < \frac{\pi}{2}\).
Answer:
5. Find the area of the region between the curve \(y = x^3 - 3x^2 + 2x, \ 0 \leq x \leq 2 \) and the \(x \)-axis.

Answer:

6. Express the solutions of the initial value problem in terms of integrals.

\[
\frac{dy}{dx} = \sec x. \quad y(2) = 3.
\]

Answer:

7. Suppose that \(f \) has a positive derivative for all values of \(x \) and that \(f(1) = 0 \). Which of the following statements must be true of the function \(g(x) = \int_0^x f(t) \, dt \)?

Give reasons for your answers.

(a) \(g \) has a local maximum at \(x = 1 \).

(b) \(g \) has a local minimum at \(x = 1 \).

(c) The graph of \(g \) has an inflection point at \(x = 1 \).

(d) The graph of \(\frac{dg}{dx} \) crosses the \(x \)-axis at \(x = 1 \).
8. Evaluate the integrals.
(a) \(\int \csc^2(2\theta) \cot(2\theta) \, d\theta \).
(b) \(\int 3y \sqrt{7 - 3y^2} \, dy \).
(c) \(\int \sec^2(3x + 2) \, dx \).
(d) \(\int \frac{\sin(2t + 1)}{\cos^2(2t + 1)} \, dt \).
(e) \(\int \frac{1}{t^2} \cos \left(\frac{1}{t} - 1 \right) \, dt \).
(f) \(\int x^3 \sqrt{x^2 + 1} \, dx \).

Answer:
9. Evaluate the integral \(\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)^2} \, dx \) using the following substitutions.
 (a) \(u = \tan^3 x \), followed by \(v = 2 + u \).
 (b) \(u = 2 + \tan^3 x \).

Answer:

(a)

(b)

10. Use the Substitution Formula to evaluate the integrals.
 (a) \(\int_0^1 \frac{5r}{(4 + r^2)^2} \, dr \).
 (b) \(\int_0^{\sqrt{3}} \frac{4x}{\sqrt{x^2 + 1}} \, dx \).
 (c) \(\int_0^{2\pi} \frac{\cos z}{\sqrt{4 + 3 \sin z}} \, dx \).
 (d) \(\int_0^1 (4y - y^2 + 4y^3 + 1)^{-2/3} (12y^2 - 2y + 4) \, dy \).

Answer:
11. Find the total areas of the shaded regions.

Answer: