Chapter Six

Demand

Properties of Demand Functions

 Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x₁*(p₁,p₂,y) and x₂*(p₁,p₂,y) change as prices p₁, p₂ and income y change.

Own-Price Changes

- How does x₁*(p₁,p₂,y) change as p₁ changes, holding p₂ and y constant?
- Suppose only p_1 increases, from p_1 ' to p_1 " and then to p_1 ".

Own-Price Changes

- The curve containing all the utilitymaximizing bundles traced out as p₁ changes, with p₂ and y constant, is the p₁price offer curve.
- The plot of the x₁-coordinate of the p₁price offer curve against p₁ is the ordinary demand curve for commodity 1.

Own-Price Changes

- What does a p₁ price-offer curve look like for Cobb-Douglas preferences?
- Take

$$\mathbf{U}(\mathbf{x}_1,\mathbf{x}_2) = \mathbf{x}_1^{\mathbf{a}}\mathbf{x}_2^{\mathbf{b}}.$$

Then the ordinary demand functions for commodities 1 and 2 are

Own-Price Changes $x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$ and $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$.

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat and the ordinary demand curve for commodity 1 is a rectangular hyperbola.

Own-Price Changes

 What does a p₁ price-offer curve look like for a perfect-complements utility function?

 $U(x_1,x_2) = \min \big\{ x_1,x_2 \big\}.$ Then the ordinary demand functions for commodities 1 and 2 are

Own-Price Changes $x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1+p_2}$. With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* . As $p_1 \rightarrow 0$, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$. As $p_1 \rightarrow \infty$, $x_1^* = x_2^* \rightarrow 0$.

$$\begin{array}{l} \text{Own-Price Changes} \\ x_1^*(p_1,p_2,y) = \begin{cases} 0 & , \text{ if } p_1 > p_2 \\ y \, / \, p_1 \, , \text{ if } p_1 < p_2 \end{cases} \\ \text{and} \\ x_2^*(p_1,p_2,y) = \begin{cases} 0 & , \text{ if } p_1 < p_2 \\ y \, / \, p_2 \, , \text{ if } p_1 > p_2. \end{cases} \end{array}$$

Own-Price Changes

• Taking quantity demanded as given and then asking what must be price describes the inverse demand function of a commodity.

Own-Price Changes A perfect-complements example: $x_1^* = \frac{y}{p_1 + p_2}$ is the ordinary demand function and $p_1 = \frac{y}{x_1^*} - p_2$ is the inverse demand function.

Income Changes

 How does the value of x₁*(p₁,p₂,y) change as y changes, holding both p₁ and p₂ constant?

• A plot of quantity demanded against income is called an Engel curve.

Income Changes and Cobb-Douglas Preferences

 An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1, x_2) = x_1^a x_2^b.$$

The ordinary demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-
Douglas Preferences
$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:
 $y = \frac{(a+b)p_1}{a}x_1^*$ Engel curve for good 1
 $y = \frac{(a+b)p_2}{b}x_2^*$ Engel curve for good 2

Income Changes and Perfectly-Substitutable Preferences

• Another example of computing the equations of Engel curves; the perfectly-substitution case.

$$\mathbf{I}(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1 + \mathbf{x}_2.$$

• The ordinary demand equations are

Income Changes and Perfectly-Substitutable Preferences $x_{1}^{*}(p_{1},p_{2},y) = \begin{cases} 0 &, \text{ if } p_{1} > p_{2} \\ y/p_{1}, \text{ if } p_{1} < p_{2} \\ y/p_{2}, \text{ if } p_{1} < p_{2} \end{cases}$ $x_{2}^{*}(p_{1},p_{2},y) = \begin{cases} 0 &, \text{ if } p_{1} < p_{2} \\ y/p_{2}, \text{ if } p_{1} > p_{2} \end{cases}$ Suppose $p_{1} < p_{2}$. Then $x_{1}^{*} = \frac{y}{p_{1}}$ and $x_{2}^{*} = 0$ $\implies \qquad y = p_{1}x_{1}^{*} \text{ and } x_{2}^{*} = 0.$

- In every example so far the Engel curves have all been straight lines?
 Q: Is this true in general?
- A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

Homotheticity

• A consumer's preferences are homothetic if and only if

$$(\mathbf{x}_1, \mathbf{x}_2) \prec (\mathbf{y}_1, \mathbf{y}_2) \Leftrightarrow (\mathbf{k}\mathbf{x}_1, \mathbf{k}\mathbf{x}_2) \prec (\mathbf{k}\mathbf{y}_1, \mathbf{k}\mathbf{y}_2)$$

for every $\mathbf{k} > 0$.

• That is, the consumer's MRS is the same anywhere on a straight line drawn from the origin.

Income Effects -- A Nonhomothetic Example

• Quasilinear preferences are not homothetic.

$$\mathbf{U}(\mathbf{x}_1,\mathbf{x}_2) = \mathbf{f}(\mathbf{x}_1) + \mathbf{x}_2.$$

• For example,

$$\mathbf{U}(\mathbf{x}_1,\mathbf{x}_2) = \sqrt{\mathbf{x}_1} + \mathbf{x}_2.$$

Income Effects

- A good for which quantity demanded falls as income increases is called income inferior.
- Therefore an income inferior good's Engel curve is negatively sloped.

Cross-Price Effects
A Cobb- Douglas example:

$$x_2^* = \frac{by}{(a+b)p_2}$$

so
 $\frac{\partial x_2^*}{\partial p_1} = 0.$
Therefore commodity 1 is neither a gross
complement nor a gross substitute for
commodity 2.

Warning of the concept

- When there are more than 2 goods, x1 may be a substitutes for x3 but x3 may be a complement for x1.
- Net substitutes and net complement are more precise.