Numerical methods to solve $f(x) = 0$, $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$

f is non-linear. Generally, pick $x_0 \in \mathbb{R}^n$, method generates $x_1, x_2, \ldots, x_n, \ldots$ and we hope x_n converges to some \overline{x}, i.e. $\|x_n - \overline{x}\| \xrightarrow{n \to \infty} 0$, and $f(\overline{x}) = 0$.

Questions:

- How fast does x_n converge?
- Do we obtain convergence for all x_0 in \mathbb{R}^n, or in smaller $S \subset \mathbb{R}^n$, or x_0 “close to” \overline{x}?

Classification of Speed of Convergence

Definition 1 (The Rate of Convergence) Know $\frac{\alpha_n}{\beta_n} \rightarrow 0$, and $\exists k > 0$ such that $|\alpha_n - \alpha| \leq k|\beta_n|$ for n large enough, i.e. $\lim_{n \to \infty} \frac{|\alpha_n - \alpha|}{|\beta_n|} \leq k$, then we say α_n converges to α with the rate of convergence $O(\beta_n)$, also written as $\alpha_n = \alpha + O(\beta_n)$.

This can be considered that α_n converging to α is as fast as β_n converging to 0. We often take β_n as p-series: $\beta_n = \frac{1}{n^p}$ ($p > 0$).

Definition 2 (The Order of Convergence) Know $x_n \rightarrow \overline{x}$. If $\exists \alpha \geq 1$ and $\lambda > 0$ such that

$$\lim_{n \to \infty} \frac{\|x_{n+1} - \overline{x}\|}{\|x_n - \overline{x}\|^{\alpha}} = \lambda,$$

then we say “$x_n \rightarrow \overline{x}$ of order α”.

Namely, the order above is described by comparing the current and next differences to the cluster point. If $x_n \rightarrow \overline{x}$ is of order α, then for any given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$\lambda - \varepsilon \leq \frac{\|x_{n+1} - \overline{x}\|}{\|x_n - \overline{x}\|^{\alpha}} \leq \lambda + \varepsilon \quad \forall n \geq N,$$

$$\Rightarrow \|x_{n+1} - \overline{x}\| \leq c\|x_n - \overline{x}\|^{\alpha} \quad \forall n \geq N.$$

If $\alpha = 1$, usually we’d like to have $c \in (0, 1)$ so that $\|x_{n+1} - \overline{x}\|$’s keep shrinking:

$$\|x_{n+1} - \overline{x}\| \leq c\|x_n - \overline{x}\| \leq c^2\|x_{n-1} - \overline{x}\| \leq \cdots \leq c^{n+1}\|x_0 - \overline{x}\| \xrightarrow{n \to \infty} 0.$$
Definition 3 We say “\(x_n \rightarrow \bar{x}\) in at least order \(\alpha\)” if \(\exists c > 0\) such that
\[
\|x_{n+1} - \bar{x}\| \leq c\|x_n - \bar{x}\|^\alpha
\]
for large \(n\).

\(\alpha = 1\) with \(c \in (0, 1)\) : linear convergence
\(1 < \alpha < 2\) : super-linear convergence
\(\alpha = 2\) : quadratic convergence

In case \(\alpha = 1\), \(c \in (0, 1)\):
\[
\|x_{n+1} - \bar{x}\| \leq c^{n+1}\|x_0 - \bar{x}\| = k\beta_n \rightarrow 0,
\]
where \(k := c\|x_0 - \bar{x}\|\) and \(\beta_n := c^n\), i.e. \(x_n \rightarrow \bar{x}\) with \(O(\beta_n)\) rate.

Example 1 A simple “enclosure” method — bisection method, is a of order 1: \(f : \mathbb{R} \rightarrow \mathbb{R}\) is continuous on \([a, b]\) and \(f(a)f(b) < 0\), then, by Intermediate Value Theorem, \(\exists \) a real root \(\bar{x} \in [a, b]\).

Basically, begin with \(f(a)f(b) < 0\):
do {
\(t := \frac{a+b}{2}\).
If \(f(t) \approx 0\) or \(a \approx b\), then break. (subject to change)
If \(f(a)f(t) < 0\), then \(b := t\),
else, \(a := t\).
}

At each step, define \(x_n := \frac{a_n + b_n}{2}\) and know \(\exists \bar{x} \in (a_n, b_n)\) is a real root of \(f\).

\[
|x_n - \bar{x}| \leq \frac{1}{2}|b_n - a_n| \leq \cdots \leq \left(\frac{1}{2}\right)^n \frac{|b_0 - a_0|}{\beta_n k}.
\]

Usually we use bisection method for one dimensional problems to get a good starting \(x_0\) for other faster method.

Iterating Methods for Finding Roots

Most sophisticated methods for finding roots are based on “fixed point iteration” method:

Idea: Convert the original problem \(f(x) = 0\) holds at \(\bar{x}\)
into a new problem \(\Phi(x) = x\) holds at \(\bar{x}\)
and use \(\Phi\) to define the method:
starting from some \(x_0\), then \(x_1 := \Phi(x_0), x_2 := \Phi(x_1), \ldots\)

Questions:

- How to construct \(\Phi\)?
- Once \(\Phi\) is obtained, does the method converge?
- If the method converges, does it converge for all \(x_0\)? How fast?
Example 2 \(f : \mathbb{R} \to \mathbb{R}, \ f \in C^1(\mathbb{R}) \) with \(f' \neq 0 \), define \(\Phi(x) := x - [f'(x)]^{-1}f(x) \), iteration: \(x_{n+1} = \Phi(x_{n}) = x_{n} - [f'(x_{n})]^{-1}f(x_{n}) \) —— iterator of Newton’s method, seen later.

Note that NOT EVERY \(\Phi \) for which \(\overline{x} \) is a fixed point works:

Example 3 \(f(x) = x^2 - 3, \ \overline{x} = \sqrt{3} \) is a root.

1. \(\Phi_1(x) := f(x) + x = x^2 - 3 + x \ (\Phi_1(\sqrt{3}) = \sqrt{3}) \)
 \(x_{n+1} := \Phi_1(x_{n}) = x_{n}^2 - 3 + x_{n}, \ n = 0, 1, 2, \ldots. \)
2. \(\Phi_2(x) := \frac{3}{x} \ (\Phi_2(\sqrt{3}) = \sqrt{3}) \)
 \(x_{n+1} := \Phi_2(x_{n}) = \frac{3}{x_{n}}, \ n = 0, 1, 2, \ldots. \)
3. \(\Phi_3(x) := \frac{1}{2}(x + \frac{3}{x}) \ (\Phi_3(\sqrt{3}) = \sqrt{3}) \)
 \(x_{n+1} := \Phi_3(x_{n}) = \frac{1}{2}(x_{n} + \frac{3}{x_{n}}), \ n = 0, 1, 2, \ldots. \)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(x_1)</td>
<td>3.0</td>
<td>1.5</td>
<td>1.75</td>
</tr>
<tr>
<td>(x_2)</td>
<td>9.0</td>
<td>2.0</td>
<td>1.732143</td>
</tr>
<tr>
<td>(x_3)</td>
<td>81.0</td>
<td>1.5</td>
<td>1.732051</td>
</tr>
<tr>
<td>(x_4)</td>
<td>6639.0</td>
<td>2.0</td>
<td>1.73205088</td>
</tr>
</tbody>
</table>
\[\downarrow \] \[\downarrow \] \[\sqrt{3} \]

Not every root being a fixed point of \(\Phi \) is a cluster.

We want \(\Phi \) to be a COTRACTION:

Definition 4 Let \(\Phi : \mathbb{R}^n \to \mathbb{R}^n, \ S \subset \mathbb{R}^n \). \(\Phi : S \to S \) is called a contraction mapping on \(S \) if \(\exists k \in [0, 1) \) such that

\[
\|\Phi(x) - \Phi(y)\| \leq k\|x - y\| \ \forall \ x, y \in S.
\]

This definition suggests the continuity of \(\Phi \) on \(S \), but not necessarily the differentiability.

Example 4 If \(\Phi \) is differentiable on \(\mathbb{R}^n \) (\(D\Phi = (\frac{\partial \Phi}{\partial x})_{i,j} \)), then, by Mean Value Theorem in \(\mathbb{R}^n \),
\(\Phi(x) - \Phi(y) = D\Phi(z)(x - y) \) for some \(z \in \) line segment \([x, y]\) : \(\|\Phi(x) - \Phi(y)\| \leq \|D\Phi(z)\| \|x - y\| \),
where \(\|D\Phi(z)\| \) is the induced matrix norm\(^1\). But for \(x, y \in S \subset \mathbb{R}^n \), \(z \in [x, y] \) may not be in \(S \). So, if \(\sup_{z \in S} \|D\Phi(z)\| = k < 1 \) and if \(S \) contains all line segments between arbitrary \(x, y \) in \(S \) (\(\iff \ S \) is convex), then, \(\Phi \) is a contraction on \(S \).

\(^1\)Linear transformation \(A : \mathbb{R}^m \to \mathbb{R}^n \). Induced matrix norm of \(A \):
\(\|A\| \overset{\text{def}}{=} \sup_{\|x\| \leq 1} \|Ax\| = \sup_{\|x\|=1} \|Ax\| = \sup_{0 \neq x} \frac{\|Ax\|}{\|x\|} \),
\(x \in \mathbb{R}^m, Ax \in \mathbb{R}^n \), so \(\|x\| \) and \(\|Ax\| \) are in their space norms respectively.
Theorem 1 (Contraction Mapping Theorem) \(S \subset \mathbb{R}^n \) is closed and \(\Phi \) is a contraction on \(S \), i.e. \(\forall x, y \in S, \|\Phi(x) - \Phi(y)\| \leq k\|x - y\| \) for some \(k \in [0, 1) \), then \(\exists \) a unique \(\bar{x} \in S \) such that \(\Phi(\bar{x}) = \bar{x} \).

Furthermore, for any \(x_0 \in S \), define \(x_{n+1} := \Phi(x_n), n = 0, 1, 2, \cdots \) (fixed point iteration). This gives a sequence \(\{x_n\} \subset S \) satisfying \(\|x_n - \bar{x}\| \xrightarrow{n \to \infty} 0. \)

(proof) \(\Phi : S \to S, : \{x_n\} \subset S. \) Must show \(\{x_n\} \) is Cauchy:

\[
\|x_{n+1} - x_n\| = \|\Phi(x_n) - \Phi(x_{n-1})\| \leq k\|x_n - x_{n-1}\| = \cdots = k^n\|x_1 - x_0\|,
\]

therefore \(\|x_{n+p} - x_n\| \leq \|x_{n+p} - x_{n+p-1}\| + \cdots + \|x_{n+1} - x_n\| \leq (k^{n+p-1} + \cdots + k^n)\|x_1 - x_0\| \leq k^n \frac{1}{1-k}\|x_1 - x_0\| \xrightarrow{n \to \infty} 0 \).

\(S \) is closed, \(x_n \) sequence will converge to some point in \(S \), say \(\bar{x} \), i.e. \(x_n \xrightarrow{n \to \infty} \bar{x} \in S \). Must show

- Cluster point \(\bar{x} \) is a fixed point of \(\Phi \):
 \[
 \|\Phi(\bar{x}) - \bar{x}\| \leq \|\Phi(\bar{x}) - x_n\| + \|x_n - \bar{x}\| \leq \|\Phi(\bar{x}) - \Phi(x_{n-1})\| + \|x_n - \bar{x}\| \leq k\|\bar{x} - x_{n-1}\| + \|x_n - \bar{x}\| \xrightarrow{n \to \infty} 0,
 \]

 therefore \(\Phi(\bar{x}) = \bar{x} \).

- Uniqueness of fixed point \(\bar{x} \):
 Suppose \(\bar{y} \in S \) and \(\Phi(\bar{y}) = \bar{y} \). Then \(\|\bar{x} - \bar{y}\| = \|\Phi(\bar{x}) - \Phi(\bar{y})\| \leq k\|\bar{x} - \bar{y}\| \Rightarrow \bar{x} = \bar{y} \). \(\blacksquare \)

Example 5 Let \(\Phi : \mathbb{R} \to \mathbb{R} \) be differentiable. If graphs of \(y = \Phi(x) \) and \(y = x \) intersect at \(\bar{x} \) and \(|\Phi'(\bar{x})| < 1 \), then \(\Phi \) is a contraction on \([\bar{x} - \delta, \bar{x} + \delta] \) for \(\delta > 0 \) small enough.

\[
\begin{align*}
\text{a contraction} & \quad & \text{not a contraction} \\
\end{align*}
\]

Corollary 1 When the conditions of Theorem 1 hold, this method converges at least in linear order.

(proof) \(\|x_{n+1} - \bar{x}\| = \|\Phi(x_n) - \Phi(\bar{x})\| \leq k\|x_n - \bar{x}\|^1 \). \(\text{(Definition 3)} \) \(\blacksquare \)

Theorem 2 \(\Phi : \mathbb{R} \to \mathbb{R}, \Phi(\bar{x}) = \bar{x}, I \) is an open interval containing \(\bar{x} \), and

- \(\Phi'' \in \mathcal{C}(I) \) (twice differentiable on \(I \)),
- \(\exists M > 0 \ s.t. \ |\Phi''(x)| \leq M \forall x \in I \),
- \(\Phi'(\bar{x}) = 0 \).

Then for \(x_0 \) close enough to \(\bar{x} \), \(x_n \to \bar{x} \) at least quadratically.
(pf.) By the continuity of Φ', $\exists I_0 \subset I$ s.t. $\exists \in I_0$ and $|\Phi'(x)| < 1 \ \forall \ x \in I_0$. $\Rightarrow \Phi'$ is a contract on I_0.

To show “converges at least quadratically”: expand Φ about ξ:

$$\Phi(x) = \Phi(\xi) + \Phi'(\xi)(x - \xi) + \frac{\Phi''(\xi)}{2!}(x - \xi)^2$$

on I_0 for some ξ between x and ξ. Pick $x = x_n$:

$$\Rightarrow \Phi(x_n) = x_{n+1} = \xi + 0(x_n - \xi) + \frac{\Phi''(\xi)}{2!}(x_n - \xi)^2,$$

$\therefore |x_{n+1} - \xi| = \left| \frac{\Phi''(\xi)}{2!} \right| |x_{n+1} - \xi|^2 \leq \frac{M}{2} |x_n - \xi|^2$. \blacksquare

Theorem 3 $\Phi : \mathbb{R}^n \to \mathbb{R}^n$, $\Phi(\xi) = R$, $B := B(\xi, r)$, and if

- $\frac{\partial^2 \Phi_i}{\partial x_j \partial x_k}$ is continuous on $B \ \forall \ i, j, k = 1, \ldots, n$ (Φ is twice differentiable on B),
- $\exists M > 0 \ s.t. \ |\frac{\partial^2 \Phi_i}{\partial x_j \partial x_k}| \leq M$ on B,
- $D\Phi(\xi) = 0_{n \times n}$.

Then for x_0 close enough to ξ, $x_n \to \xi$ at least quadratically.

Generically Construct a Fixed Point Iterator Φ for $f : \mathbb{R}^n \to \mathbb{R}^n$

Define an iterator $\Phi(x) = x - [A(x)]^{-1}f(x)$ with some $A(x)_{n \times n}$ to be determined. Let $B(x) = \begin{pmatrix} b_{ij}(x) \end{pmatrix} = [A(x)]^{-1}$, then $\Phi_i(x) = x_i - \sum_{j=1}^n b_{ij}(x)f_j(x)$, and

$$\frac{\partial \Phi_i}{\partial x_k}(x) = \delta_{ik} - \sum_{j=1}^n \frac{\partial b_{ij}}{\partial x_k}(x)f_j(x) - \sum_{j=1}^n b_{ij}(x)\frac{\partial f_j}{\partial x_k}(x).$$

Suppose ξ is a root of $f(x) = [f_1(x), \ldots, f_n(x)]^T$, then

$$\frac{\partial \Phi}{\partial x_k}(\xi) = \delta_{ik} - \sum_{j=1}^n b_{ij}(\xi)\frac{\partial f_j}{\partial x_k}(\xi).$$

If we want $D\Phi(\xi) = \begin{pmatrix} \frac{\partial \Phi_i}{\partial x_k} \end{pmatrix}_{i,k}(\xi) = 0_{n \times n}$, i.e. $I = B(\xi)Df(\xi)$, $\iff A(\xi) = Df(\xi)$. Notice that the singularity of $Df(x)$ is not discussed yet.

If $f(x)$ is “smooth enough” and if $Df(x)$ is non-singular for x “sufficiently close” to ξ (true if, for example, $Df(\xi)$ is non-singular, but, who knows?), then we can take $A(x) := Df(x)$, so $\Phi(x) = x - [Df(x)]^{-1}f(x)$ iteration can have quadratic convergence, by the previous theorem.

What if $Df(\xi)$ is singular(not invertible)?
Example 6 \(f(x) := (x-a)^mg(x) \), and \(g(a) \neq 0 \). Fix \(x_0 \) sufficiently close to \(a \) and apply Newton’s iteration \(\Phi(x) = x - f'(x)^{-1}f(x) \).

If the multiplicity \(m \) of root \(a \) is 1 and if the continuity of \(f'' \) at \(a \) is assumed, then \(f'(a) = g(a) + (a-a)g'(a) \neq 0 \) (the graph of \(f \) around \(a \) is “slant”), \(\Phi'(a) = 1 - (1 - \frac{f'(a)f''(a)}{f'(a)^2}) = 0 \), and the Newton’s iteration has at least quadratic convergence by Theorem 2.

Visualize that if \(m \) is bigger, then the graph of \(f \) around \(a \) is kind of “flatter”, so that the Newton’s iteration is slower, but, at least has linear convergence:

If the multiplicity \(m \) of root \(a \) is > 1, then \(f'(a) = 0 \), singular, \(\Phi'(a) \) not existing, possibly no quadratic convergence. \(\Phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-a)g(x)}{mg(x)+(x-a)g'(x)} \). Obviously, if \(g' \) continuous at \(a \), then \(\lim_{x \to a} \frac{(x-a)g(x)}{mg(x)+(x-a)g'(x)} = 0 \) so \(x_n \to a \) consequently. Let \(h(x) := \frac{g(x)}{mg(x)+(x-a)g'(x)} \), i.e. \(\Phi(x) = (x-a)h(x) \).

Then

\[
\Phi'(x) = 1 - h(x) - (x-a)h'(x) = 1 - \frac{1}{m+(x-a)\frac{g'(x)}{g(x)}} - (x-a)h(x),
\]

Further more, if \(g' \) is continuous at \(a \), then for \(x \) very close to \(a \), roughly speaking, \(\Phi'(x) \approx 1 - \frac{1}{m} \) since \((x-a)\frac{g'(x)}{g(x)} \) and \((x-a)h(x) \) will be very small, \(|\Phi'(x)| < 1 \) for \(x \approx a \), therefore \(\Phi \) is a contraction on a small neighborhood of \(a \), by previous corollary, \(x_n \to a \) at least linearly for \(x_0 \) close to \(a \). ■

Tangent Line Method = Newton’s Method

Taylor expansion of \(f \) at \(x_0 \)

\[
f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \frac{f'''(x_0)}{3!}(x-x_0)^3 + \cdots
\]

i.e. \(f(x) \approx f(x_0) + f'(x_0)(x-x_0) \) for \(x \approx x_0 \). It is believed that root of \(f(x) \) is also close to root of \(f(x_0) + f'(x_0)(x-x_0) \). Tangent line

\[
y = f(x_0) + f'(x_0)(x-x_0),
\]

will intersect \(x \)-axis at

\[
x_1 := x_0 - f'(x_0)^{-1}f(x_0),
\]

therefore \(\Phi(x) := x - f'(x)^{-1}f(x) \) is taken as the iterator. Obviously, \(\Phi(\bar{x}) = \bar{x} \iff f(\bar{x}) = 0 \).

Secant Line Method

For \(x_0 \approx x_1 \), replace tangent line by secant line in Newton’s method, i.e. regard secant line as an approximation, as \(x \approx x_0, x_1 \):

\[
f(x) \approx f(x_0) + f'(x_0)(x-x_0) \\
\approx f(x_0) + \frac{f(x_0) - f(x_1)}{x_0 - x_1} (x-x_0) \left(= f(x_1) + \frac{f(x_0) - f(x_1)}{x_0 - x_1} (x-x_1) \right)
\]

the slope of the tangent is replaced by the slope of the secant, much easier to evaluate in most of the cases.

\[
\therefore f(x_i) + \frac{f(x_0) - f(x_1)}{x_0 - x_1} (x-x_i) = 0 \iff x := x_i - \frac{x_0 - x_1}{f(x_0) - f(x_1)} f(x_i).
\]
Though \(i = 0 \) or \(i = 1 \) gives the same \(x \)-intercept, to do it regularly, we'll take \(i = 1 : x_2 := x_1 - \frac{x_0 - x_1}{f(x_0) - f(x_1)} f(x_1) \), i.e. the iterator is defined as

\[
x_{n+2} = \Phi(x_{n+1}) := x_{n+1} - \frac{x_n - x_{n+1}}{f(x_n) - f(x_{n+1})} f(x_{n+1})
\]

\(x_{n+2} \) is where secant \(x_n x_{n+1} \) and \(x \)-axis intersect. If \((x_n) \) converges, say, to \(\bar{x} \), then \(\bar{x} \) must be a fixed point of \(\Phi \):

\[
\begin{align*}
x_{n+2} &= x_{n+1} - \frac{x_n - x_{n+1}}{f(x_n) - f(x_{n+1})} f(x_{n+1}) & n \to \infty \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\bar{x} &= \bar{x} - f'(\bar{x})^{-1} f(\bar{x})
\end{align*}
\]

the same as in Newton’s method.

False Position Method

In the secant line method, if we pick \(i = 0 \), \(x_2 := x_0 - \frac{x_0 - x_1}{f(x_0) - f(x_1)} f(x_0) \) “by mistake”, follow this regularity, the sequence should be

\[
\begin{align*}
x_2 &= x_0 - \frac{x_0 - x_1}{f(x_0) - f(x_1)} f(x_0), \\
x_3 &= x_0 - \frac{x_0 - x_2}{f(x_0) - f(x_2)} f(x_0), \\
x_4 &= x_0 - \frac{x_0 - x_3}{f(x_0) - f(x_3)} f(x_0), \\
&\quad \vdots \\
x_{n+1} &= x_0 - \frac{x_0 - x_n}{f(x_0) - f(x_n)} f(x_0),
\end{align*}
\]

\(x_{n+1} \) is where secant \(x_0 x_{n+1} \) and \(x \)-axis intersect. Iterator: \(\Phi(x) = x_0 - \frac{x_0 - x}{f(x_0) - f(x)} f(x_0) \). Obviously, \(\Phi(p) = p \iff f(p) = 0 \). If \(x_n \to p \), then

\[
p = x_0 - \frac{x_0 - p}{f(x_0) - f(p)} f(x_0),
\]

i.e. \(x_0 p \) intersects \(x \)-axis at \(p \), which implies \((p, f(p)) \) is actually on the \(x \)-axis, i.e. \(f(p) = 0 \).

Questions:

- Is it always expected that iteration will produce a monotonic sequence to converge?
- If secant line method works for two initial inputs \(x_0 \) and \(x_1 \), so does false position method? Ask yourself the converse question.
- If initially, \(f(x_0) f(x_1) < 0 \), how do you compare bisection with secant line and false position?

Müller’s Method for finding a complex root of \(f \)

Three distinct points \((x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))\) uniquely determine a quadratic function \(q(x) \), viewed as an approximation of \(f \). Root of \(q \), \(x_3 \), trivially, can be computed by the quadratic formula, maybe complex. Overwrite \(x_0 \) by \(x_1 \), \(x_1 \) by \(x_2 \), \(x_2 \) by new root \(x_3 \), start all over again until the \(\{x_n\} \) sequence converges:
Given distinct x_0, x_1, x_2, let $f_i := f(x_i)$ and $q(x) := a(x - x_2)^2 + b(x - x_2) + c$ with $q(x_i) = f_i$. Then trivially $c = f_2$, and

$$a = \frac{(f_0 - f_1) - (f_1 - f_2)}{x_0 - x_2} = \frac{(x_1 - x_2)(f_0 - f_2) - (x_0 - x_2)(f_1 - f_2)}{(x_0 - x_1)(x_1 - x_2)(x_0 - x_2)},$$

$$b = \frac{(f_1 - f_2)}{x_0 - x_2} + (x_2 - x_1)a = \frac{(x_0 - x_2)^2(f_1 - f_2) - (x_1 - x_2)^2(f_0 - f_2)}{(x_0 - x_1)(x_1 - x_2)(x_0 - x_2)},$$

$$q(x_3) = 0 \iff x_3 - x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b \mp \sqrt{b^2 - 4ac}}.$$

For the sake of accuracy, pick the one whose denominator D has larger absolute value: $x_3 := x_2 + \frac{-2c}{b}$.

Polynomial equation \(\leadsto\) eigenvalue problem

For example, given a polynomial $f(x) := x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, and define

its companion matrix $A := \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 \end{bmatrix}$. Then

$$f(\lambda) = 0 \iff \det(A - \lambda I) = 0 \iff \exists \mathbf{v} = [v_1 \ v_2 \ v_3 \ v_4]^T \neq 0 \text{ such that } A\mathbf{v} = \lambda \mathbf{v}$$

$$v_2 = \lambda v_1, \quad (1)$$

$$v_3 = \lambda v_2, \quad (2)$$

$$v_4 = \lambda v_3, \quad (3)$$

$$-a_0v_1 - a_1v_2 - a_2v_3 - a_3v_4 = \lambda v_4, \quad (4)$$

\[. \] $v_3 = \lambda^2v_1, \ v_4 = \lambda^3v_1$, and (4) becomes $v_1(a_0 + a_1\lambda + a_2\lambda^2 + a_3\lambda^3 + \lambda^4) = 0$, i.e. a root of f is an eigenvalue of A.

Instead of solving characteristic equation of A (equivalent to $f(x) = 0$), we can apply other methods to solve for eigenvalues of A, for example, the homotopy continuation method.

Evaluation of Polynomials

When solving for roots of a function f by any iterative method, we need to evaluate, unavoidably, the function value f or its derivative f' many times. To save do that efficiently, we should always take advantages of the specialty of f itself. If f is a univariate polynomial, then $f(a)$, by the so-called Chinese Remainder Theorem equals the remainder of $f(x)$ divided by $(x - a)$:

If $f(x) = r + (x - a)q(x)$, then $f(a) = r$,

$$\Rightarrow f'(x) = q(x) + (x - a)q'(x),$ \ and \ $f'(a) = q(a)$ —— evaluation of a polynomial still.

Therefore, we need to reduce the computation of evaluating polynomials. This can be done easily with *Synthetic Division*: $q_0(x)$ is a polynomial written in the power of x in ascending order

$$q_0(x) = a_n x^n + \cdots + a_1 x + a_0.$$

Let b_i be the remainder quotient of $q_i(x)$ divided by $(x - a)$ for $i = 0, 1, 2, \cdots$:

$$q_i(x) = b_i + (x - a)q_{i+1}(x).$$
Keep doing synthetic division to the quotient, \(q_0(x) \) can be written as a polynomial in \((x - a) \):

\[
q_0(x) = b_0 + (x-a)q_1(x) \\
= b_0 + (x-a)[b_1 + (x-a)q_2(x)] \\
\ldots \\
= b_0 + (x-a)[b_1 + (x-a)[b_2 \cdots + (x-a)\cdots]]
\]

Evaluating \(a_0 + a_1\Delta + \cdots + a_{n-1}\Delta^{n-1} + a_n\Delta^n \) by \(a_0 + \Delta(a_1 + \Delta(a_{n-1} + \Delta(a_n)\cdots)) \) is called the “Horner’s Scheme”.

Accelerating Convergence — Aitken’s \(\Delta^2 \) method

If \(p_n \to p \), then, for large \(n \), roughly we have

\[
P_{n+1} - p \approx \frac{P_{n+2} - p}{P_{n+1} - p} \\
\Rightarrow (P_{n+1} - p)^2 \approx (P_n - p)(P_{n+2} - p), \\
\Rightarrow P_{n+2} - 2P_{n+1}p + p^2 \approx P_nP_{n+2} - (P_n + P_{n+2})p + p^2,
\]

\[
\Rightarrow p \approx \frac{P_nP_{n+2} - P_{n+1}^2}{P_{n+2} - 2P_{n+1} + P_n} \\
\approx \frac{P_n(P_{n+2} - 2P_{n+1} + P_n) + 2P_nP_{n+1} - P_n^2}{P_{n+2} - 2P_{n+1} + P_n} \\
\approx P_n - \frac{(P_{n+1} - P_n)^2}{P_{n+2} - 2P_{n+1} + P_n} \overset{\text{def}}{=} \hat{p}_n
\]

i.e. if \(p_n \to p \), then \(\hat{p}_n \to p \), and, “faster”.

The following is why called “\(\Delta^2 \)” (second difference):

\[
\begin{array}{ccc}
p_n & \Delta p_n & \Delta^2 p_n \\
p_0 & \Delta p_0 & \Delta p_0 \\
p_1 & \Delta p_1 & \Delta^2 p_0 \\
p_2 & \Delta p_2 & \Delta^2 p_1 \\
p_3 & \vdots & \vdots \\
\end{array}
\]

\(\Delta p_n \) \overset{\text{def}}{=} p_{n+1} - p_n,

\(\Delta^2 p_n = \Delta(\Delta p_n) = \Delta(p_{n+1} - p_n) = p_{n+2} - p_{n+1} - (p_n - p) = p_{n+2} - 2p_{n+1} + p_n \).

The new sequence is built upon the first and the second differences of the original: \(\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} \).