Vector Algebra

General Inner Product Space

Let \mathcal{X} be a vector space over a field F (here our vector space \mathcal{X} denotes \mathbb{R}^n or \mathbb{C}^n and F denotes either real field \mathbb{R} or complex field \mathbb{C} throughout this course).

Definition 1 A semi-inner product is a binary operation $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to F$ such that for all $\alpha, \beta \in F$ and $x, y, z \in \mathcal{X}$, the followings are satisfied:

1. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
2. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$
3. $\langle x, x \rangle \geq 0$
4. $\langle x, y \rangle = \langle y, x \rangle$

An inner product on \mathcal{X} is a semi-inner product that also satisfies

5. If $\langle x, x \rangle = 0$, then $x = 0$.

Theorem 1 (Cauchy-Schwarz Inequality) If $\langle \cdot, \cdot \rangle$ is a semi-inner product on \mathcal{X}, then

$$|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$$

for all $x, y \in \mathcal{X}$.

Moreover, the equality occurs iff $\exists \alpha, \beta \in F$, both not 0, such that $\langle \alpha x + \beta y, \alpha x + \beta y \rangle = 0$.

Corollary 1 If $\langle \cdot, \cdot \rangle$ is a semi-inner product on \mathcal{X} and $\|x\| \overset{\text{def}}{=} \langle x, x \rangle^{\frac{1}{2}}$ for all $x \in \mathcal{X}$, then

$$\|x + y\| \leq \|x\| + \|y\|$$

for all $x, y \in \mathcal{X}$ (Triangle Inequality),

$$\|\alpha x\| = |\alpha|\|x\|$$

for $\alpha \in F$ and $x \in \mathcal{X}$.

If $\langle \cdot, \cdot \rangle$ is an inner product, then, $\|x\| = 0$ implies $x = 0$.

The quantity $\|x\| \overset{\text{def}}{=} \langle x, x \rangle^{\frac{1}{2}}$ for an inner product is called the norm of x, said it’s the norm induced by the inner product.

By definitions of $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$,

$$\langle x + y, x + y \rangle = \langle x, x \rangle + 2 \text{Re}(\langle x, y \rangle) + \langle y, y \rangle,$$

i.e.

$$\|x + y\|^2 = \|x\|^2 + 2 \text{Re}(\langle x, y \rangle) + \|y\|^2.$$

Abstract vector algebra on Hilbert spaces

Exercise 1 Look up metric space and complete metric space.

Remark 1 A Hilbert space is a vector space \mathcal{H} over F together with an inner product $\langle \cdot, \cdot \rangle$ such that relative to the metric $d(x, y) \overset{\text{def}}{=} \|x - y\|$ induced by the norm, \mathcal{H} is a complete metric space. (for the continuity issue).

Definition 2 (Orthgonality) If \mathcal{H} is a Hilbert space and $x, y \in \mathcal{H}$, then x and y are orthogonal (perpendicular) to each other if $\langle x, y \rangle = 0$, in symbol, $x \perp y$. If $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{H}$, then $\mathcal{X} \perp \mathcal{Y}$ provided that $x \perp y$ for every $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
Theorem 2 (The Pythagorean Theorem) If \(x_1, \ldots, x_n \) are orthogonal to one another in \(H \), then
\[
\| x_1 + \cdots + x_n \|^2 = \| x_1 \|^2 + \cdots + \| x_n \|^2.
\]

Theorem 3 (Parallelogram Law) If \(H \) is a Hilbert space and \(x, y \in H \), then
\[
\| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2).
\]

Theorem 4 If \(M \subseteq H \) is a closed linear subspace and \(h \in H \), let \(P_h \in M \) be the unique point such that \(h - P_h \perp M \). Then
1. \(P \) is a linear transformation on \(H \),
2. \(\| Ph \| \leq \| h \| \) for every \(h \in H \),
3. \(P^2 = P \),
4. \(\ker P = M^\perp \) and \(\ran P = M \).

Such \(P \) is called the orthogonal projection of \(H \) onto subspace \(M \).

Exercise 2 Prove the Cauchy-Schwarz inequality.

Exercise 3 Prove the triangle inequality.

Exercise 4 Prove the Parallelogram Law.

A Hilbert Space \((\mathbb{R}^n, \langle \cdot, \cdot \rangle) \)

We will focus on \(\mathbb{R}^n \), specially \(\mathbb{R}^3 \) from now on.

It can be shown that \(\mathbb{R}^n \) together with the inner product defined this way
\[
\langle x, y \rangle \overset{\text{def}}{=} \sum_{i=1}^n x_i y_i \text{ for any } x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \text{ in } \mathbb{R}^n
\]
is a Hilbert space.

The projection of vector \(x \) onto vector \(y \) is a vector denoted by \(\proj_y x \overset{\text{def}}{=} \frac{x}{\| y \|} \langle y, \frac{y}{\| y \|} \rangle \frac{y}{\| y \|^2} = \frac{\langle x, y \rangle}{\| y \|^2} \).

Note that usually \(\langle x, y \rangle \) is not equal to the magnitude of the projection of one onto the other.

Let \(\theta \) be the angle between vectors \(x \) and \(y \). By the law of cosine, \(\cos \theta = \frac{\langle x, y \rangle}{\| x \| \| y \|} \).

Exercise 5 State the law of cosine and prove it.

Definition 3 Cross Product (in \(\mathbb{R}^3 \)) is a binary operation between two vectors:
\[
x \times y \overset{\text{def}}{=} \| x \| \| y \| \sin \theta z \in \mathbb{R}^3
\]
where \(z \) is a unit vector in the direction of a right-hand screw as \(x \) rotating toward \(y \) through angle \(\theta \).

The alternative definition of cross product is
\[
x \times y \overset{\text{def}}{=} \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3
\end{vmatrix}
\]
Exercise 6

1. Show that the two definitions of cross product are equivalent.

2. Let \(x, y, z \in \mathbb{R}^3 \), \(\lambda \in \mathbb{R} \). Show that cross product has the following properties:
 (a) \(x \times y = -y \times x \) (skew-symmetry)
 (b) \(x \times (y + z) = x \times y + x \times z \) (distributive law)
 (c) \(\lambda(x \times y) = x \times (\lambda y) = (\lambda x) \times y \)
 (d) \(x \times x = 0 \)

3. Prove the Lagrange’s identity: \(\|x \times y\|^2 = \|x\|^2 \|y\|^2 - (x \cdot y)^2 \).

4. State the law of sines and prove it.

Notice that cross product does not have associativity, i.e. \(x \times (y \times z) \neq (x \times y) \times z \)

Exercise 7

Namely, \(x \times y \times z \) means \(x \times (y \times z) \) and \(x \times y \cdot z \) means \((x \times y) \cdot z \).

1. Show that \(x \times y \times z = x \times y \cdot z \). This sometimes is called scalar triple product.

2. Let \([xyz] \equiv x \cdot y \times z\). Show that \([xyz] = \det(x, y, z)\) and \([xyz] = [yiz] = [zxy] = -[xyz] = [yzx] = [yxz] \). Geometrically, \(x, y, z \) are co-planar iff \([xyz] = 0\).

3. Show that vector triple products \(x \times (y \times z) = (x \cdot z)y - (x \cdot y)z \), and \((x \times y) \times z = (x \cdot z)y - (y \cdot z)x \).

4. Show that \((u \times v) \times (x \times y) = [uv]x - [uv]y = [xy]u - [xy]v \). and implies that any vector can be expressed as a linear combination of any non-co-planar vectors.

5. Show the extended Lagrange identity: \((u \times v) \cdot (x \times y) = (u \cdot x)(v \cdot y) - (v \cdot x)(u \cdot y) \).

6. Show the Jacobi identity: \(x \times (y \times z) + y \times (z \times x) + z \times (x \times y) = 0 \).

7. Show that \((x \times y) \cdot (y \times z) \times (z \times x) = [xyz]^2 \).

Definition 4 (Orthonormal Set) Let \(X = \{x_1, \cdots, x_k\} \subset \mathbb{R}^n \). \(X \) is called orthonormal if \(x_i \cdot x_j = \delta_{ij} \) for any \(i, j = 1, \cdots, k \). If \(k = \#X = n \), then \(X \) is called an orthonormal basis of \(\mathbb{R}^n \).

Definition 5 (Reciprocal Sets of Vectors) Let \(X = \{x_1, \cdots, x_k\}, Y = \{y_1, \cdots, y_k\} \subset \mathbb{R}^n \). \(X \) and \(Y \) are said reciprocal to each other if \(x_i \cdot y_j = \delta_{ij} \) for any \(i, j = 1, \cdots, k \).

Exercise 8

Show that if \(X = \{x_1, x_2, x_3\} \) and \(Y = \{y_1, y_2, y_3\} \) are reciprocal sets in \(\mathbb{R}^3 \), then

1. \([x_1 x_2 x_3] \neq 0 \) and \([y_1 y_2 y_3] \neq 0 \).
2. \(x_1 = \frac{y_3 \times y_1}{[x_1 x_2 x_3]}, x_2 = \frac{y_3 \times y_2}{[x_1 x_2 x_3]}, x_3 = \frac{y_3 \times y_3}{[x_1 x_2 x_3]} \), and
 \(y_1 = \frac{y_1 \times x_3}{[x_1 x_2 x_3]}, y_2 = \frac{y_1 \times x_2}{[x_1 x_2 x_3]}, y_3 = \frac{y_1 \times x_1}{[x_1 x_2 x_3]} \).