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Abstract

Improved performance predictive models are greatly needed for use in various pavement
applications including design, evaluation, rehabilitation, and network management. The entire
project consists of three phases (I, Il, and I1l) to be completed within three years (the phase | and
phase Il have been approved and phase Il is an on-going project) to conduct “development and
applications of pavement performance prediction models,” using the well-known Long-Term
Pavement Performance (LTPP) database (LTPP DataPave Online) (http://www.datapave.com) to
improve the proposed systematic statistical and engineering approach for the development of
pavement performance prediction models. The major tasks completed in Phase | include:
preparation of standard pavement distress identification manuals for domestic use, domestic
applications of the LTPP database, review of the proposed the systematic statistical and engineering
approach, and investigation of the application of dynamic segmentation concept in GIS. In addition
to continuing the implementation of dynamic segmentation databases using commercial GIS
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software, the major tasks in Phase Il (this year) include: development of flexible pavement fatigue
cracking and rutting prediction models; and development of rigid pavement transverse cracking,
joint deterioration (spalling), and faulting performance prediction models

Exploratory data analysis (EDA) of the response variables indicated that the normality
assumption with random errors and constant variance using conventional regression techniques
might not be appropriate for prediction modeling. Therefore, without assuming the error distribution
of the response variable, generalized linear model (GLM) and general additive model (GAM) along
with quasi-likelihood estimation method were Poisson distribution were adopted in the subsequent
analysis. Box-Cox power transformation technique, visual graphical techniques, as well as the
systematic statistical and engineering approach proposed by Lee were frequently adopted during the
prediction modeling process. The goodness of the model fit was further examined through the
significant testing and various sensitivity analyses of pertinent explanatory parameters. The
tentatively proposed predictive models appeared to reasonably agree with the pavement
performance data although their further enhancements are possible and recommended.

Keywords : Pavement, Performance Prediction, Pavement Management, Geographic
Information System (GIS), LTPP, Generalized Linear Model (GLM) and General Additive Model
(GAM).
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Application of modern regression techniques and artificial neural
networks on pavement prediction modeling

Y. H. Lee & Y. B. Liu
Department of Civil Engineering, Tamkang University, Talpei, Taiwan

H. W. Ker
Department of International Trade, Chihlee Institute of Technology, Taipei, Taiwan

ABSTRACT: This study strives to illustrate the benefits of incorporating the principles of
dimensional analysis, subject-related knowledge, and statistical knowledge into pavement
prediction modeling process. Modern regression techniques including local regression and
regression splines as well as back propagation neural networks were briefly introduced.
Factorial 2-D and 3-D finite element runs and BISAR runs for different pavement systems
were conducted to generate the deflection databases for the analysis. The resulting ANN
model using all dominating dimensionless parameters was proved to have higher accuracy
and require less network training time than the other counterpart using purely input
parameters. Increasing the complexity of ANN models does not necessarily improve the
modeling statistics. The results also showed that using higher number of neurons and hidden
layers sometimes lead to even worse modeling statistics which was an indication of over
training and should be avoided. Several local regression models requiring minimal amount of
modeling time were also developed using the same databases.

KEY WORDS: Pavement deflection, prediction modeling, dimensional analysis, local
regression, artificial neural networks.

1. INTRODUCTION

Predictive models have been widely used in various pavement design procedures, evaluation,
rehabilitation, and network management systems. Empirical and mechanistic-empirical
approaches using statistical regression techniques have been utilized extensively in predicting
extremely complicated pavement responses and performance indicators for more than four
decades. Using purely empirical concepts to develop predictive models is not recommended.
Lee (1993) proposed a systematic statistical and engineering modeling approach which
strongly recommends to incorporate theoretical engineering knowledge, expert experience,
heuristics, and statistical data analysis and regression techniques altogether into the
framework to develop more mechanistic-based predictive models. In additional to the
conventional “parametric” linear and nonlinear regression techniques, several ingenious
iterative regression techniques in the area of “robust” and “nonparametric” regressions were
also incorporated. The proposed approach has been successfully implemented in the
development of many purely empirical predictive models (Lee et al., 1993; Lee & Darter,
1995), purely mechanistic predictive models (Lee & Darter, 1994a; 1994b) as well as the
mechanistic-empirical predictive models adopted in the early analyses of LTPP general
pavement studies data (Simpson et al., 1993).



Significant progress has been reported in pavement prediction modeling of simulated data
using artificial neural networks (ANN). Back propagation networks (BPN) can be taught from
one data space to another using representative set of data to be learned. The learning
process actually refers to a multi-layered, feed-forward neural network trained by using an
error back propagation algorithm or an error minimization technique (Haykin, 1999; Hecht-
Nielsen, 1990). Ceylan (2004) conducted a literature search summarizing recent ANN
applications in pavement structural evaluation such as backcalculating pavement layer moduli
and predicting primary pavement responses (e.g., stress and deflection). As with many ANN
applications in the literature (Haussmann et al., 1997; Meier et al., 1997; Ceylan et al., 1998;
1999; 2004; Ceylan & Guclu, 2005), original pertinent input parameters were used to
generate the training and testing databases. This approach often requires tremendous
amount of time and efforts in network training and testing. To reduce the size of the required
factorial databases, researchers sometimes opt to fix certain input parameters to some
prescribed values as a special case study, which may result in limiting the inference space of
the resulting model.

Nevertheless, some earlier ANN literature has also illustrated that the incorporation of the
principles of dimensional analysis lead to significant savings during the training set
generation. loannides et al. (1996) trained a back propagation neural network (BPN) to
determine the in situ load transfer efficiency of rigid pavement joints from Falling Weight
Deflectometer (FWD) data. Khazanovich and Roesler (1997) developed an ANN-based
backcalculation procedure for composite pavements. The multilayer elastic program
DIPLOMAT was used to analyze a three-layer pavement system consisting of an AC surface
layer over a PCC slab resting on a Winkler foundation. loannides et al. (1999) trained BPN
models to predict the critical slab bending stress for loading-only, curling-only, and loading-
and-curling cases. BPN predictions were compared against the Westergaard closed-form
solutions as well as the statistical regression models developed by Lee and Darter (1994a)
using a small set of factorial data with dimensionless mechanistic variables. It was re-
emphasized that mature engineering judgment and in-depth understanding of the mechanics
of the phenomenon remain the most reliable guides in the formation of the problems to be
analyzed.

Attoh-Okine (1994) proposed the use of ANN models in predicting roughness progression of
flexible pavements. Although the results were promising, some built-in functions including
learning rate and momentum term which form key neural network algorithm were not
investigated. Attoh-Okine (1999) used real pavement condition and traffic data and specific
architecture to investigate the effect of learning rate and momentum term on BPN models for
the prediction of flexible pavement performance. Sorsa et al. (1991) indicated that adding
many hidden layers gets the network to learn faster and the mean square error becomes a
little smaller, but the generalization ability of the network reduces.

Ripley (1993) discussed many statistical aspects of neural networks and tested it with several
benchmark examples against traditional and modern regression techniques, such as
generalized discriminant analysis, projection pursuit regression, local regression, tree-based
classification, etc. Ripley concluded that in one sense neural networks are little more than
non-linear regression and allied optimization methods. “That two-layer networks can
approximate arbitrary continuous functions does not change the validity of more direct
approximations such as statistical smoothers, which certainly ‘learn’ very much faster” (Ripley,
1993). Projection pursuit regression highlights the value of differentiated units and other
training schemes and offers computation shortcuts through forward and backward selection.
Statistical and subject-related knowledge can be used to guide modeling in most real-world



problems and so enable much more convincing generalization and explanation, in ways which
can never be done by ‘black-box’ learning systems (Ripley, 1993).

As part of continuous research efforts in pavement design and analysis (Lee et al., 1994a;
1998; 2004), modern regression techniques and artificial neural networks (ANN) are utilized
in this study to improve the prediction accuracy of simulated pavement deflections (Wu, 2003;
Liu, 2004). Factorial 2-D and 3-D finite element runs and BISAR runs for different pavement
systems are conducted to generate the deflection databases for the analysis. This study
strives to illustrate the benefits of incorporating the principles of dimensional analysis,
subject-related knowledge, and statistical knowledge into prediction modeling process.

2. MODERN REGRESSION TECHNIQUES
2.1 Revised two-step modeling approach using projection pursuit regression

The proper selection of regression techniques is one of the most important factors to the
success of prediction modeling. Since most of the regression algorithms currently available do
not directly consider interaction effects during the modeling process, the interaction terms
must be subjectively determined prior to performing a regression analysis. With the multi-
dimensional pavement engineering problems in mind, several unresolved deficiencies are
frequently identified in the use of stepwise regression and nonlinear regression. These
include problems in the selection of correct functional form, violations of the embedded
statistical assumptions, and failure to satisfy some engineering boundary conditions.

The projection pursuit regression (PPR), however, appears to have the most favorable
features in handling these problems, which strives to model the response surface (y's) as a
sum of nonparametric functions of projections of the predictor variables (x's) through the use
of super smoothers. More technical details about the development process, the application,
and the demonstration on modeling interactions of the PPR algorithm can be found in the
literature (Friedman & Stuetzle, 1981; Friedman, 1984; Mathsoft, Inc. 1997). The S-PLUS
statistical package, which has been widely used by statisticians, was selected for the analysis
due to the availability of this regression technique.

As a result, a two-step regression analysis procedure was proposed by Lee and Darter
(1994Db) to better find the correct functional form and to better fit the response surface. With
the help of the PPR, a multi-dimensional response surface is broken down into the sum of
several smooth projected curves which are graphically representable in two dimensions.
Plausible functional forms and applicable boundary conditions may then be easily identified
and specified through visual inspection and/or engineering knowledge of physical
relationships to model these individual projected curves separately. Traditional parametric
regression techniques such as linear, piecewise-linear, and nonlinear regressions are then
utilized for these purposes with higher confidence in the parameter estimates.

In this study, regression spline algorithm (Ker, 2002) was adopted in lieu of piecewise-linear
regressions at the second step to assure smooth junctions at the change points. A spline
function is a piecewise polynomial regression. An r+spline function is an /+degree polynomial
with n-1 continuous derivatives at the change points. These change points are called “knots”
in spline literature. Spline functions can be viewed as a data-smoothing regression function
and/or a way to improve polynomial approximation of regression function. In most cases, a
spline can be represented as a linear combination of some basis functions that have
polynomial forms. Polynomials can be viewed as a special case of spline with no knots (Smith,
1979). In fitting a spline model, the prediction should be within the data range. Cubic



splines with continuous second derivatives at the knots are most commonly used in most
applications (Seber & Wild, 1989). Cubic splines are most popular in spline applications
because they are of low degree and relatively smooth (assuming continuity restriction up to
second derivative only), and possess the power to incorporate several different trends in the
range of the data by increasing the number of knots (Smith, 1979).

2.2 Locally-weighted regression (loess) technique

The locally weighted regression (loess) technique is an approach to regression analysis by
local fitting developed by Cleveland and Devlin (1988). Cleveland and Grosse (1991) provided
computational methods for local regression. A particular data structure called k-d tree is used
for partitioning space by recursively cutting cells in half by a hyperplane orthogonal to one of
the coordinate axes. The loess approach uses a smoothing technique for fitting a nonlinear
curve to the data points locally, so that any point of the curve depends only on the
observations at that point and some specified neighboring points. The number of neighbors
(k) is specified as the percentage of the total number of points or “span”. Local regression
models provide much greater flexibility in fitting a multi-dimensional response surface as a
series of many sub-divided regions with single smooth functions of all the predictors. There
are no restrictions on the relationships among the predictors.

Figure 1 depicts the concept of loess k-d tree algorithm. This algorithm is available in the S-
PLUS statistical package (Mathsoft, Inc., 1997). As currently implemented, locally quadratic
models may have at most 4 predictor variables and locally linear models may have at most
15 predictors. The original FORTRAN and C codes for the loess algorithm can also be
obtained from the ftp site: “ftp research.att.com.”

Final tree
First four cells

| o

Second predictor
]
A
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Figure 1. lllustration of loess k-d tree algorithm (Cleveland & Grosse, 1991).
3. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) provides a flexible way to generalize linear regression
functions. They are nonlinear regression models but with so many parameters extremely
flexible to approximate any smooth function. The most commonly used rule is the
generalized delta rule or back propagation algorithm. Ripley (1993) provided the detail
definitions and brief derivation of a back propagation network (BPN). The learning procedure
has to select the weights and the biases by presenting the training examples in turn several
times, while striving to minimize the total squared error:

e =3zl —e*f @

Where y” is the output for input x°, and c¢” is the target output; the index p runs through the



data in the training set. However, the questions of how many layers and how many neurons
should be used were treated very lightly in the literature.

A neural network modeling software package called Qnet v2000 for Windows (Vesta Services,
Inc. 2000) was adopted for this study. The convergence characteristics of various activation
(or transfer) functions including step function, logistic or sigmoid function, hyperbolic tangent
function, and radial basis function as shown in Figure 2 will be further investigated (Mehrotra
et al., 1997; Smith, 1996).
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Figure 2. lllustration of various activation (or transfer) functions: (a) step function, (b) logistic
or sigmoid function, (c) hyperbolic tangent function, and (d) radial basis function.

4. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS AND MODERN REGRESSION
TECHNIQUES

4.1 Rigid pavement deflection prediction models of infinite slab size

Based on the principles of dimensional analysis, loannides et al. (1989) indicated that the
structural responses of a rigid pavement such as or the dimensionless deflection parameter
(5kt?/P) are dominated by the following four dimensionless variables: the normalized load
radius (a%), the normalized finite slab length (L/), the normalized finite slab width (W),
and the normalized radial distance (//¢) for 2-D FEM analysis. In which &is the deflection, [L];
k is the modulus of subgrade reaction, [FL®]; Pis the single wheel load, [F]; /=(E*h%/(12*(1-
12)*k))°?* is the radius of relative stiffness of the slab-subgrade system [L]; £is the modulus
of the concrete slab, [FL?]; 4 is the thickness of the slab, [L];  is the Poisson’s ratio. Note
that primary dimension for force is represented by [F], and length is represented by [L]. To
illustrate the benefits of incorporating the principles of dimensional analysis into the
modeling process, the following case studies were conducted:

4.1.1 ANN models

For an infinite single slab resting on a Winkler foundation under interior loading condition,
factorial ILLI-SLAB runs were conducted based on the following input parameters: single



wheel load P=40 kN (9,000 Ibs); tire pressure p=0.62 MPa (90 psi); modulus of the concrete
slab E= 13.78~48.23 GPa (2~7 Mpsi); modulus of subgrade reaction k=13.5~175.5 MN/m?
(50~650 pci); and slab thickness h= 15.2~76.2 cm (6—~30 in.). These input parameters were
such selected to cover wider ranges of practical cases. The dependent variable is the
deflection dand the explanatory variables are £, k, 4, and r. The resulting deflection
database consists of 12,329 data points, in which 11,329 observations were randomly
selected for actual training and the remaining 1,000 data points was used to monitor the
training process. Step activation function was first tried with extreme difficulty in achieving
convergence. Subsequently, sigmoid activation function was chosen for the modeling process.
The summary statistics of the NET1 model is shown in Table 1. Note that since certain input
parameters were fixed to some prescribed values to reduce the size of the required factorial
database, the applicability of this special case study is rather limited.

Table 1. Comparison of two different ANN models

ANN Type NET1 NET2
Outputs R
Inputs E, Kk hr ant,
. Training: 11,329 Training: 394
Data Points Monitoring: 1,000 Monitoring: 100
Hidden Layer(s) 2 1
Neurons in Each Hidden Layer 12-12 6
Learning Cycle 30,000 10,000
Learning Rate 0.5 0.1
Modeling Time 6 hrs 43 min. 42 min.
RMS Training: 0.00290 Training: 0.00377
Monitoring: 0.00420 Monitoring: 0.00360
Coefficient of Determination, R*>  0.999 0.9999

Alternatively, the aforementioned factorial ILLI-SLAB runs may be generalized based on the
following dimensionless parameters: a/#=0.05~0.4 (step by 0.01) and //¢ ranges from O to
3.2 determined by automatic mesh generation. To simulate infinite slab size conditions,
L/ and W/ were greater than or equal to 8. Thus, a 2-D rigid pavement deflection database
with 494 data points was obtained (Liu, 2004). The dependent variable is the deflection ratio
(R) defined as the ratio of the deflection at any radial distance to the resulting maximum
deflection. In which 394 data points were used for actual ANN training and the remaining
100 observations were used to monitor the training process. The convergence characteristics
of various activation functions were investigated. As shown in Figure 3(a), it was noted that
sigmoid activation function has better convergence characteristics than hyperbolic tangent
function. Using a single hidden layer with only 5 neurons, sigmoid function completed 10,000
training cycles in 35 minutes whereas hyperbolic tangent function needed 60 minutes,
although the resulting root mean squared errors (RMS) had no much difference. Radial basis
activation function was also tried with extreme difficulty in achieving convergence. In
addition, increasing the number of neurons during the network training process does not
necessarily improve the modeling statistics. On the contrarily, as shown in Table 2 and Figure
3(b) the resulting RMS and training time increased while increasing the number of neurons in
the hidden layer. Since the model with only six neurons had the lowest RMS, it was chosen as
the proposed model (NET2) as summarized in Table 1. It was also concluded that with the
incorporation of dimensional analysis in the modeling process, the requirements on database
generation and network training time could be greatly reduced.



Table 2. Summary statistics of different ANN models

ANN Type Number of Neurons in the Hidden Layer

5 6 7 8 9 10
Training RMS 0.00416 | 0.00377 0.00524 0.00569 0.00554 0.00520
Monitoring RMS 0.00384 | 0.00360 0.00492 0.00529 0.00520 0.00490
R-Squared 0.9999 | 0.9999 0.9999 0.9999 0.9999 0.9999
Training Time 35 min. | 42 min. 52 min. 60 min. 67 min. 82 min.
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Figure 3. Comparison of convergence characteristics: (a) due to different activation functions;
(b) due to different number of neurons in the hidden layer.

4.2 Rigid pavement deflection predictions of finite slab size

To further investigate the convergence characteristics of different ANN models and to
illustrate the possibility of over training, the following case studies were conducted.

4.2.1 ANN models

Similarly, for a finite single slab resting on a Winkler foundation under interior loading
condition, factorial ILLI-SLAB runs were conducted based on the following input parameters:
an=0.05~0.4, /A= 2~7, W/A=2~7, and /¢ ranges from O to 3.2 determined by automatic
mesh generation. A 2-D rigid pavement deflection database with 2,227 data points was
obtained (Liu, 2004). The dependent variable is the deflection ratio (R) defined as the ratio
of the deflection at any radial distance to the resulting maximum deflection. The explanatory
variables are the following dimensionless variables: a#, L/, W/, and /.

In which 2,027 data points were randomly selected for actual ANN training and the remaining
200 observations were used to monitor the training process. Similarly, it was noted that
sigmoid activation function has better convergence characteristics than hyperbolic tangent
function. Using a single hidden layer with only 8 neurons and learning rate = 0.01, sigmoid
function completed 30,000 training cycles in 11 minutes whereas hyperbolic tangent function
needed 20 minutes, although the resulting root mean squared errors (RMS) had no much
difference. Radial basis activation function was also tried, but extreme difficulties were
encountered in achieving convergence. By increasing the number the hidden layers from 1 to
2 and the number of neurons from 8 to 13 during the network training process, the resulting
RMS and training time are summarized in Table 3. The convergence characteristics of
different ANN models with 8 neurons in the first hidden layer were shown in Figure 4. The
ANN model with 8 neurons in the first hidden layer and 1 neuron in the second hidden layer
was chosen as the proposed model due to its relatively small RMS. The results also showed
that more complicated ANN models using higher number of hidden layers and neurons



sometimes lead to even worse modeling statistics which was an indication of over training
and should be avoided.

Table 3. Summary statistics of ANN models with different number of layers and neurons

%I/\lpl\é Summary Number of Neurons in the First Hidden Layer
Statistics 8 9 10 11 12 13
o Training RMS 0.01037 | 0.00965 | 0.00974 | 0.00782 | 0.00887 | 0.00925
2 0 Monitoring RMS | 0.01007 | 0.00966 | 0.01046 | 0.00785 | 0.00923 | 0.01011
s R-Squared 0.9988 0.9989 0.9989 0.9993 0.9991 0.9989
S Training Time 11 min. | 12min. |13 min. |15 min. | 16 min. | 17 min.
3 Training RMS 0.00552 | 0.00550 | 0.00562 | 0.00553 | 0.00602 | 0.00539
T 1 Monitoring RMS | 0.00565 | 0.00594 | 0.00518 | 0.00513 | 0.00562 | 0.00568
g R-Squared 0.9997 0.9997 0.9996 0.9997 0.9997 0.9997
8 Training Time 11 min. | 12 min. | 13 min. | 16 min. | 17 min. | 21 min.
& Training RMS 0.00714 | 0.00620 | 0.00563 | 0.00668 | 0.01102 | 0.00589
21 Monitoring RMS | 0.00711 | 0.00604 | 0.00581 | 0.00613 | 0.01028 | 0.00713
- R-Squared 0.9994 | 0.9996 0.9994 | 0.9995 0.9988 0.9995
7 Training Time 13min. | 13min. | 15min. | 18 min. | 19 min. | 22 min.
o Training RMS 0.00599 | 0.00751 | 0.00581 | 0.00817 | 0.00981 | 0.01008
§ 3 Monitoring RMS | 0.00549 | 0.00831 | 0.00588 | 0.00864 | 0.00904 | 0.01061
= R-Squared 0.9997 0.9988 0.9991 0.9988 0.9979 0.9978
B Training Time 15min. | 16 min. | 17 min. | 19 min. | 21 min. | 24 min.
o Training RMS 0.00570 | 0.00748 | 0.00558 | 0.01005 | 0.00673 | 0.00671
'g 4 Monitoring RMS | 0.00569 | 0.00803 | 0.00559 | 0.01074 | 0.00656 | 0.00726
2 R-Squared 0.9993 0.9988 0.9994 | 0.9978 0.9978 0.9991
Training Time 18 min. | 18 min. | 19 min. | 22 min. | 24 min. | 25 min.
(a) (b)

Training Convergence Diagram

Testing Convergence Diagram

0.025

RMS
0.015 0.020
I I

0.010
I

0.005
I

0.030

—e— Layer 1 Node 8 ; Layer 2 Node

—a— Layer 1 Node 8 ; Layer 2 Node 1
—v— Layer 1 Node 8 ; Layer 2 Node 2|
—=&— Layer 1 Node 8 ; Layer 2 Node 3|
—o— Layer 1 Node 8 ; Layer 2 Node 4

0.024
L

RMS
0.018
I

0.012
I

0.006
I

—e— Layer 1 Node 8 ; Layer 2 Node 0|
—a— Layer 1 Node 8 ; Layer 2 Node 1|
—v— Layer 1 Node 8 ; Layer 2 Node 2|
—=— Layer 1 Node 8 ; Layer 2 Node 3|
—o— Layer 1 Node 8 ; Layer 2 Node 4|

ARl
vvvvvv

vvvvvv

0.000

0

T
5000

T T
10000 15000

Iteration

T
20000

T
25000

0.000

30000 0 5000 10000

15000 20000

Iteration

25000 30000

Figure 4. Comparison of convergence characteristics: (a) training data; (b) testing data.

4.2.2 Loess models

Several S-PLUS trials of local regressions were conducted using the same database. The
response variable was chosen as the deflection ratio (R) and the explanatory variables were
an, LA, W/i, and r/. The resulting loess model was easily obtained requiring minimal
amount of modeling time, in which the smoothing parameter “span” was chosen as 0.1,
whereas the “cell” argument was chosen as 0.01. The following regression statistics were
obtained: the number of observations = 2,227; equivalent number of parameters = 31.9;
residual standard error = 0.006376; and multiple R-squared = 1. The resulting errors were
still relatively small even when the proposed loess model was quite simple.




4.3 Three-dimensional rigid pavement deflection predictions

With the introduction of three-dimensional (3-D, ABAQUS) FEM (Hibbitt et al., 2000) and all
the promising features reported in the literature, its applications on pavement engineering
become inevitable (Wu, 2003). Based on the principles of dimensional analysis, loannides
and Salsilli-Murua (1989) indicated that the dimensionless deflection parameter (sk¢/P) is
only a function of a#, [/, and W/ for 2-D FEM analysis. Extreme difficulties were
encountered while using only these three dimensionless variables (a#, L/, W/#) to
determinesk¢?/P for 3-D FEM analysis. Subsequently, an additional dominating dimensionless
variable (h/a) defined as the ratio of slab thickness (/) and load radius (&) was identified to
account for the theoretical differences between 2-D and 3-D FEM analyses (Lee et al., 2004).
A series of 3-D FEM factorial runs was conducted for a single squared slab resting on a
Winkler foundation under interior loading condition with the following dimensionless
parameters: a#=0.05, 0.1~0.5 (step by 0.1); [A#=2~8 (step by 1); W/A=L/A; and
h/a=0.5~6 (step by 0.5). These ranges were carefully selected to cover a very wide range of
highway and airfield rigid pavement conditions. An automated analysis program was
developed using the Visual Basic software package (Microsoft, 1998) to automatically
construct FEM models, generate the input files, conduct the runs, as well as summarize the
results to avoid untraced human errors. A 3-D rigid pavement deflection database with 504
data points was obtained (Liu, 2004).

4.3.1 ANN models

In which, 404 observations were randomly chosen for actual training and the remaining 100
data points were used for monitoring the training process. Deflection ratio (R) defined as the
ratio of 3-D FEM results to Westergaard solutions was treated as the response variable.
Sigmoid activation function was chosen in this case study. The learning rate was set as 0.02
for the cases analyzed. In the first ANN model (NET1), no transformation was made on the
response variable. As shown in Table 4 and in Figure 5, the modeling statistics and the
convergence characteristics of the NET1 model were satisfactory.

Table 4. Comparison of two different ANN models

ANN Type NET1 NET2

Outputs R 1/R

Inputs all, L/t, hi/a all, L/¢, h/a

Hidden Layer(s) 2 2

Neurons in Each Hidden Layer 10-4 10-4

Learning Cycle 30,000 30,000

RMS Train_ing_: 0.00989 Trair]ing_: 0.00539
Monitoring: 0.01019 Monitoring: 0.00478

Coefficient of Determination, R>  0.9988 0.9999

Nevertheless, it is worth mentioning that since Westergaard's closed-from deflection is very
small for thicker pavements or larger load sizes (larger Ai/a and a/), the resulting 3-D FEM
deflections can be several times of the theoretical solutions due to possible compression
across the slab thickness. Since the resulting 3-D FEM deflections are always higher than the
Westergaard solutions, the reciprocal of the deflection ratio (1/R) always ranges from 0 to 1.
Wu (2003) has illustrated that using 1/R as the response variable lead to better physical
meanings (or interpretations) of the proposed PPR model. With the incorporation of subject-
related knowledge into the modeling process, it was shown that smaller root mean squared
errors (RMS) and higher coefficient of determination (R?) have been achieved in the NET2
model, although the convergence rate was slightly slower.
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Figure 6. Proposed PPR model for the 3-D deflection database
4.3.2 Revised two-step modeling approach using PPR and regression splines

To facilitate future possible applications of the 3-D rigid pavement deflection database, the
following predictive model as shown in Figure 6 was developed using projection pursuit
regression technique (Lee & Darter, 1994b; Friedman & Stuetzle, 1981). The response
variable was chosen as the reciprocal of the deflection ratio (1/R) and the explanatory
variables were a/, L/, h/a, and their variations. Regression spline algorithm was adopted in
lieu of piecewise-linear regressions at the second step to assure smooth junctions at the
change points. Consequently, the coefficient of determination (R?) was slightly reduced from
0.996 to 0.9942 as the expense of this smoothing. The tentative predictive model and its
regression statistics are as follows: (In which, N is the number of observations and SEE is the
standard error of the estimation.)



1/ R =0.54008 + 0.29653 @, +0.09667 @,

®, =1.28770 +10.04098(A1) +11.76579(A1)* + 4.88399(A1)°
—16.23312(A1> -0.3) * (Al + 0.3)° — 20.95209( Al > —0.1) * (A1 + 0.1)°

@, =-11.68986 +180.53050(A2) — 895.12897(A2)* +1482.36407(A2)*

—1468.55407(A2 > 0.2) * (A2 — 0.2)° —16.40377(A2 > 0.4) * (A2 — 0.4)° 2
Al= 0.42473x1+0.01922x2 — 0.00925x3 — 0.49378x4 — 0.60805X5 + 0.45343x6
A2 =—0.28347x1+ 0.03160x2 + 0.00071x3 + 0.37804x4 + 0.53626X5 — 0.69868%6

X —[x1,x2,x3,x4,x5,x6]=| &, £ P h,a a,L h.al
f ¢ a a ¢ ¢ ¢ a (¢ /

Statistics : N =504, R? =0.9942, SEE = 0.02241

4.3.3 Loess models

Several S-PLUS trials of local regressions were conducted using the same database. Again,
the response variable was chosen as the reciprocal of the deflection ratio (1/R) and the
explanatory variables were a/, L/, and //a. The resulting loess model was easily obtained
at a greatly reduced amount of modeling time, in which the smoothing parameter “span” was
chosen as 0.1, whereas the “cell” argument was chosen as 0.1. The following regression
statistics were obtained: the number of observations = 504; equivalent number of
parameters = 56.6; residual standard error = 0.004784; and multiple R-squared = 1.

4.4 Flexible pavement deflection predictions

Based on the multi-layer elastic theory and the principles of dimensional analysis, the
following dominating dimensionless variables were identified for a three-layer pavement
system: E./E;, Ex/Es hi/hs, and a/f.. In which, ais the radius of the applied load, [L]; /; and
h are the thickness of the surface and base layers, [L]; £1, £z, and £z are the Young's moduli
of the surface layer, base layer, and subgrade, respectively, [FL™]. A series of factorial BISAR
runs was conducted with the following ranges to cover most practical pavement data:
0.5=E,/E;=170, 0.5=Ex/E3<170, 0.2=h/h,=<2.4, and 0.5=a/h,=5.0. A BASIC program
written by Dr. Alaeddin Mohseni was used to automatically generate the input files and
summarize the results to avoid untraced human errors. A pavement response database
including the aforementioned dimensionless variables, deflections at the center of load (Do),
horizontal strain (&) and vertical strain (g,) at the bottom of the surface layer was obtained. A
training database with 3,600 data points and an independent testing database with 1,728
data points were used in this study (Liu, 2004).

4.4.1 ANN models

The training database was randomly separated into 3,400 data points for actual training and
the remaining 200 observations for monitoring the training process. Hyperbolic tangent
activation function was chosen in this case study. The learning rate was set as 0.01. At the
first trial (NET1) as shown in Table 5, no transformation was made on both explanatory and
response variables. Extreme difficulty was encountered in obtaining reasonable convergence.

Based on the basic assumptions of conventional regression techniques that the random
errors are mutually uncorrelated and normally distributed with zero mean and constant



variance, and additive and independent of the expectation function, it is desirable to check
the normality of the response variable. The Box-Cox (1964) transformation procedure was
adopted to find the approximate power transformation of the response variable (D). As
shown in Figure 7(a), the maximum likelihood estimator A was approximate O indicating that
a logarithm transformation was appropriate for O, (Weisberg, 1985). Figure 7(b) is the normal
Q-Q plot which graphically compares the distribution of log(D;) to the normal distribution
represented by a straight line. This indicates that the logarithm of D, is approximate to
normally-distributed. In the second trial (NET2), convergence was obtained though the
number of learning cycles and modeling time were still very high. The root mean squared
(RMS) errors were computed accordingly.

Table 5. Comparison of three different ANN models

ANN Type NET1 NET2 NET3

Outputs Do Log(Dyp) Log(Dy)

Inouts E1/E2, E2/E3, h1/h2, E]_/EQ, Ez/Eg, h1/h2, IOg(E]_/Eg), IOg(E2/E3),
P a/h, a/h, hy/h,, a/h,

Hidden Layer(s) 3 3 2

Neurons in Each 12-6

Hidden Layer 20-10-5 15-10-5

Learning Cycle Cannot converge 200,000 27,000

Modeling Time > 24 hrs 10 hrs 26 min

RMS . Training: 0.0048 Training: 0.0040

Monitoring: 0.0045 Monitoring: 0.0039
(a) (b)

Box and Cox Transformation

0.95%

Log Likelihood
-10000
L

-15000
I

-20000
I

-2 -1 1 2

0 T T T T T
Lambda -3 -2 -1 0 1 2 3
Regressing E1/E2(Lambda) on DO Normal Distribution

Figure 7. (a) Box-Cox transformation result; and (b) normal Q-Q plot of log(D,).

According to general statistical principles or using the alternating conditional expectations
(ACE) algorithm (Breiman & Friedman, 1985) together with the Box-Cox power
transformation technique proposed by Lee (1993), logarithm transformations of D, E./E>,
and Ex/E; were recommended for NET3 model. As shown in Table 5, with more statistical
knowledge incorporated into the ANN modeling process, the resulting ANN model was proved
to have higher accuracy and less network training time than the other counterpart using
purely input parameters. Figures 8(a) and 8(d) depict the network convergence results for
NET2 and NET3 during the training process. The goodness of the prediction of log(D,) and
the goodness of the prediction of D, for NET2 and NET3 were also provided in Figures
8(b)~8(c) and 8(e)—8(f) during the testing phase, respectively. With more statistical
knowledge incorporated into the modeling process, the resulting ANN model was proved to
have higher accuracy and less network training time than the other counterpart using purely
input parameters.
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Figure 8. (a) ~ (c) NET2 network convergence results, goodness of the prediction of log(Dy),
and prediction of Do; and (d) ~ (f) for NET3 network, respectively.

4.4.2 Loess models

Several S-PLUS trials of local regressions were conducted using the same training and testing
databases. Again, the logarithm transformations of D, E£./E> and E./E; were adopted here.
The response variable is log(D,;) and the explanatory variables are log(£/E), 109(E2/E3),
hi/hs and a/h, The resulting loess model was obtained at a greatly reduced amount of
modeling time, in which the smoothing parameter “span” was chosen as 0.1, whereas the
“cell” argument was chosen as 0.1. The following regression statistics were obtained:
number of observations = 3,600; equivalent number of parameters = 31.9; residual standard
error = 0.02792; and multiple R-squared = 1. The goodness of the prediction of log (Do) and
Do were presented in Figures 9(a) and 9(b), respectively.

The resulting loess model was compared to the aforementioned NET2 and NET3 models for
the goodness of Dg predictions during the testing phase. Reasonable good predictions can be
achieved using both ANN and modern regression techniques.
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5. CONCLUDING REMARKS

Several case studies were conducted to illustrate the benefits of incorporating the principles
of dimensional analysis, subject-related knowledge, and statistical knowledge into pavement
prediction modeling process. The resulting ANN model using all dominating dimensionless
parameters was proved to have higher accuracy and require less network training time than
the other counterpart using purely input parameters. Increasing the complexity of ANN
models does not necessarily improve the modeling statistics. The results also showed that
using higher number of neurons and hidden layers sometimes lead to even worse modeling
statistics which was an indication of over training and should be avoided. Several local
regression models requiring minimal amount of modeling time were also developed using the
same databases. The resulting loess model was compared to the aforementioned ANN
models for the goodness of predictions. Reasonable good predictions can be achieved using
both ANN and modern regression techniques. Statistical and subject-related knowledge can
be used to guide modeling in most real-world problems and so enable much more convincing
generalization and explanation, in ways which can never be done by ‘black-box’ learning
systems (Ripley, 1993).
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