Development of a Thickness Design Program for Rigid Airfield Pavements
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The man objective of this study is to
develop a new thickness design program for
rigid airfield pavements in attempts to
accommodate the new-coming Boeing 777
airplanes based on the plate theory approach.
The differences of the conventional FAA design
method and the newly developed LEDFAA
design methodology are investigated. The
origina concept of pass-to-coverage ratio is
reevaluated. The prediction models developed by

86/08/01~87/07/31

Lee, et a. (1997) are utilized for the estimation
of critical edge stresses. The problems and
difficulties of the conventional method
especialy in the conversions of different aircraft
types are identified. The concept of cumulative
damage factor is used to account for the
combined damages of different aircraft types and
departures. Structural deterioration relationships
are compared and tentative modification
aternatives are investigated. Consequently, an
equivalent stress factor is introduced and an
aternative structural deterioration model is
proposed. Research effort is still underway to
implement the proposed approach into a
user-friendly computer program (TKUAPAV).
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Tentative Fatigue Equations
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