+、Design of Overlays for Flexible Pavements

參考資料:

- 1. Darter, M. I. "Techniques for Pavement Rehabilitation," Training Course, FHWA, 1987. (Block 5, Module 5C)
- 2. AASHTO, "AASHTO Guide for Design of Pavement Structures," Volume I, 1993. (Chapter 5)

Approaches

- 1. Engineering Judgement
- 2. Structural Deficiency:
 AASHTO structural number approach, Corps of Engineers
- 3. Deflection approach:
 Asphalt Institute (AI), California, Texas
- 4. Mechanistic Fatigue Damage Approach:
 - (a) characteristic of pavements, E's
 - (b) past damage
 - (c) remaining life
 - (d) required overlay thickness Not widely utilized

Types of Overlays over Rigid Pavements AC, PCC (same as before)

Fundamentals of the AASHTO Overlay Design Procedure (Figure 2)

Basic AASHTO Design Procedure:

Figure 1 Relationship of Serviceability, structural capacity, and traffic

$$SN_{OL} = SN_y - F_{RL}(SN_{xeff})$$
 $h = SN_y / G$

 $h_{OL} = SN_{OL} / a_{OL}$

 SN_{xeff} = effective structural capacity F_{RL} = remaining life factor ≤ 1.0

AASHTO Flexible Overlay Design Over Flexible Pavements

Major Seven Steps:

- 1. Analysis unit delineation
- 2. Traffic analysis
- 3. Material and environmental study
- 4. Effective structural capacity analysis (SC_{xeff})
- 5. Future overlay structural capacity analysis (SC_y)
- 6. Remainling life factor deterimination (F_{RL})
- 7. Overlay design analysis

Analysis Unit Delineation

- 1. determine boundaries along the project
- 2. accurate historic data available / unavailable

Traffic Analysis (ESAL)

Material and Environmental Study

- existing pavement layer properties
 NDT backcalculation techniques
- 2. existing subgrade properties (stress sensitivity)

3. design properties of overlay layers

Effective Structural Capacity Analysis (SC_{xeff})

- 1. Estimate drainage coefficients (m_i) (Figure 3)
- 2. Use the modulus values determined in step 3 to determine existing layer coefficients (Figure 4 Figure 8)
- 3. Calculate SN_{xeff}

$$SN_{xeff} = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3$$

Future overlay structural capacity analysis (SN_y) Simply a new pavement design

Remaining life factor determination (F_{RL})

- 1. Remaining life of existing pavement:

 NDT (Figure 9), Traffic Approach, Time
 Approach (Figure 10), Serviceability
 Approach (Figure 11), Visual Condition
 Survey Approach (Figure 12)
- 2. Remaining life of overlaid pavement (Figure 2)
- 3. Use R_{Lx} and R_{Ly} to determine F_{RL} (Figure 13) The procedure is very confusing and was removed in the new AASHTO Guide (1993).

AC overlay thickness determination $h_{OL} = SN/a_{OL} \label{eq:hole}$

AASHTO Rigid Overlays Over Flexible Pavements

- 1. Determine composite modulus of subgrade reaction (k_c)
- 2. Treat as a new rigid pavement design

Example Problems

Major Steps

- Step 1 Collect basic information and design criteria
- Step 2 Determine the required structural capacity to support the future traffic
- Step 3 Determine the effective SC of the existing pavement
- Step 4 Determine the remaining life factor
- Step 5 Computation of final overlay design thickness

Design of flexible overlays over flexible pavements (Figure 20 ~ Figure 22)

Overlay design analysis 1993 年 AASHTO Guide 各類加鋪組合之加鋪厚度計算公式如下表所示:

表一加鋪厚度計算公式

加鋪材料	現存鋪面	加鋪設計公式
AC	AC	hol= SNol /a
		=(Snf - SNeff)/a
AC	Break/PCC	hol= SNol /a
		=(Snf - SNeff)/a
AC	PCC	Dol=A(Df -Deff)
AC	AC/PCC	Dol=A(Df -Deff)
Bonded PCC	PCC	Dol= Df-Deff
Unbonded PCC	PCC	$D^2 ol = D^2 f - D^2 eff$
PCC	AC	Dol= Df