CHAPTER 1

BENDING OF LONG. RECTANGULAR PLATES TO A
CYLINDRICAL SURFACE

1. Differential Equation for Cylindrical Bending of Plates. We shall
begin the theory of bending of plates with the simple problem of the
bending of a long rectangular plate that is subjected to a transverse load
that does not vary along the length of the plate. The deflected surface
of a portion of such a plate at a considerable distance from the ends!
can be assumed cylindrical, with the axis of the cylinder parallel to the
length of the plate. We can therefore restrict ourselves to the investi-
gation of the bending of an elemental strip cut from the plate by two
planes perpendicular to the length of the plate and a unit distance (say
1 in.) apart. The deflection of this strip is given by a differential equa-
tion which is similar to the deflection
equation of a bent beam.

To obtain the equation for the de-
flection, we consider a plate of.uni-
form thickness, equal to h, and take
the zy plane as the middle plane of
the plate before loading, 7.e., as the
plane midway between the faces of
the plate. Let the y axis coincide with one of the longitudinal edges
of the plate and let the positive direction of the z axis be downward,
as shown in Fig. 1. Then if the width of the plate is denoted by I, the
elemental strip may be considered as a bar of rectangular cross section
which has a length of [ and a depth of A. In calculating the bending
stresses in such a bar we assume, as in the ordinary theory of beams,
that cross sections of the bar remain plane during bending, so that they
undergo only a rotation with respect to their neutral axes. If no normal
forces are applied to the end sections of the bar, the neutral surface of
the bar coincides with the middle surface of the plate, and the unit

elongation of a fiber parallel to the x axis is proportional to its distance z -

1 The relation between the length and the width of o plate in order that the maxi-
mum stress may approximate that in an infinitely long plate is discussed later; sce
pp. 118 and 125.
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from the middle surface. The curvature of the deflection curve can be
taken equal to —d?w/dz?, where w, the deflection of the bar in the z
direction, is assumed to be small compared with the length of the bar I
The unit elongation e, of a fiber at a distance 2 from the middle surface
(Fig. 2) is then —z d*w/dx?.

Manlag use of ITuukc's law, tio wal Gluigas
tions e, and ¢, in terms of the normal stresses
o, and o, acting on the element shown shaded
in Fig. 2a are

e, — 7= _ Vo
- m ) W » (1)
Y E E
where E is the modulus of elasticity of the ME@

material and » is Poisson’s ratio. The lateral

strain in the y direction must be zero in order to maintain continuity
in the plate during bending, from which it follows by the second of the
equations (1) that ¢, = vo.. Substituting this value in the first of the
equations (1), we obtain

R
- E .

X He, Fz  d*w -

anc - 7 = _ -~ (o)
ana Ty — 1 — 2 1= 2 da? (&)

If the plate is submitted to the action of tensile or compressive forces
acting in the a direction and uniformly distributed along the longitudinal
sides of the plate, the corresponding direct stress must be added to the
stress (2) due to bending.

Having the expression for bending stress o,, we obtain by integration
the bending moment in the elemental strip:

N L h2 0 Ee? dw o, Eh? d2w
M= \\\,\m o2 dz = A\,LN\N 1 — »2da? dz = 12(1 — »?) dx?
Introducing the notation
Eh?
[FI R @)

we represent the equation for the deflection curve of the elemental strip
in the following form:

D——=—-M (4

in which the quantity D, taking the place of the quantity ET in the case
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due to-the pure bending by radial moments P /4« applied along the boundary of the
plate.

It should be noted also that, for small- 4»58 of the ratio r/a, the effect of the
shearing force P/2rr upon the &ammoiod is represented mainly by the second term
on the right-hand side of Eq. (). To this term corresponds a slope
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OoBm.E.Em this Hmmc—o with ﬁam @Gnmmm_ou QY we ood&:mw that the mmoeow v

@

. L 31
. 21 +4v»
if introduced an Eq. (0) instead of k¥ = £, would give a more accurate value of Sao
déformation due to shear in the case of a plate without a hole.
All preceding considerations are applicable only to circular plates bent to a surface
of revolution. A more general theory of bending taking into account the effect of the
shear forces on the deformation of the plate will be given in Arts. 26 and 39.

. CHAPTER 4 .

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES

21. The Differential Equation of the Deflection Surface. We assume
that the load acting on a plate is normal to its surface and that the
deflections are small in comparison with the thickness of the plate (see
Art. 13). At the boundary we assume that the edges of the plate are
free to move in the plane of the plate; thus the reactive forces at the
edges are normal to the plate. With these assumptions we can neglect
any strain in the middle plane of the plate during bending. Taking, as

e~ QX ||||| >
2]

My +WE dy~-_ P \Zx+m7>xo_x
Styx N N mz
Myx+ %%% oy——F===722% TMxy + @Xx dx
aQ ) 3~ dQx
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Fia. 47

before (see Art. 10), the coordinate axes z and y in the middle plane of
the plate and the z axis perpendicular to that plane, let us consider an

_element cut out of the plate by two pairs of planes parallel to the zz and

yz planes, as shown in Fig. 47. . In addition to the bending moments M,

- and M, and the twisting moments M = which were considered in the pure

bending of a plate (see Art. 10), there are vertical shearing forces! acting
on.the sides of the element. The magnitudes of these shearing forces
per unit length parallel to the y and z axes we denote by Q. mbm. Qy,
respectively, so that

Q: = \ lim Tz A2 Q, = \. i Tyz 02 | (@)

h/2 —h/2

Since the moments and the shearing forces are functions of the coordi-
nates x and y, we must, in discussing the conditions of equilibrium of the
element, take into consideration the small changes of these quantities
when the coordinates z and y change by the small quantities dz and dy.

! There will be no horizontal shearing forces and no forces normal to the sides of the

element, since the strain of the middle plane of the plate is assumed negligible.
9 -
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The middle plane of the element is represented in Fig. 48a and b, and the
diréctions in which the anmam and mogmm are taken as positive are

indicated.
We must also consider the load distributed over the upper surface of

the plate. The intensity of this load we denote by ¢, so that the load
acting on the element! is ¢ dx dy.

\u
| 0+ iy
2
[4

Fic. 48

Projecting all the forces acting on the element onto the z axis we obtain
the following equation of equilibrium:

®©uagae+m©ﬁ&t&&+@&a&f\

from which

00,
ax

+¢=0 (99)

00y
T3

Taking moments of all the forces acting on the element with respect to
the = axis, we obtain the equation of equilibrium

&? F

dr dy — dy dz + Q, dx dy = ®)

! Since the stress component o, is Smﬁmog? we actually are not able to apply the

load on the upper or on the lower surface of the plate. Thus, every transverse single -

load considered in the thin-plate theory is merely a discontinuity in the magnitude of
the shearing forces, which vary according to the parabolic law through ‘the thickness
of the plate. Likewise, the weight of the plate can be included in the load ¢ without
affecting the accuracy of the result. If the effect of the surface load becomes of
special interest, thick-plate theory has to be used (see Art. 19).
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The moment of the load ¢ and the moment due to change in the force @,
are neglected in this equation, since they are small quantities of a higher
order than those retained. anmw simplification, Eq. (b) becomes

&S &§ v
ox

+©.\| \ Anv

In the same manner, by taking Bomeam With respect to the y axis, we

obtain
oM. mg z

Y +

Since there are no forces in the z and y directions and no moments
with respect to-the z axis,.the three equations (99), (c), and (d) com-
pletely define the equilibrium of the element. Let us eliminate the
shearing forces @, and @, from these equations by determining them from
Eqgs. (c) and (d) and substituting into Eq. (99). In this manner we obtain
M. | My, | *M, 3*Myy ©

3t Tazay T oy dzoy. . ¢

~Q.=0 @

Observing that M,. = —M,,, by virtue of 7., = r,., we finally represent
the equation of equilibrium (e) in the following form:
a?M, , *M 92M .,

¥y __ P
2 T e 2azay q

(100)

To represent this equation in terms.of the deflections w of the plate,
we make the assumption here that expressions (41) and (43), developed
for the case of pure bending, can be used also in the case of laterally
loaded plates. This assumption is equivalent to neglecting the effect on
bending-of the shearing forces Q. and @, and the compressive stress o,
produced by the load ¢. We have alredady used sueh an assumption in
the previous chapter and have seen that theerrors.in deflections obtained
in this way are small provided the thickness of the plate is small in com-
parison with the dimensions of the plate in its plane. An approximate
theory of bending of thin elastic plates, taking into account the effect of
shearing forces on the deformation, will be given in Art. 39, and several
examples of exact solutions of bending problems of plates will be dis-
cussed in-Art. 26.

" Using z and y directions instead of n and ¢, which were used in Eqs.

(41) and (43), we obtain

2 2 2

dz?
@N

(102)
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Substituting these expressions in Hn (100), we obtain!

oy dw . w_ g (103)
mlan.f.m.mgwmmw+m% D

This latter equation can also be written in the symbolic form
CMw=7 a0
CAAw =
- dw | w ’ (105
where sw = ot o (105)

It is seen that the problem of bending of plates U.%, a lateral load ¢
reduces to the integration of Eq. (103). If, for a vmh.SoEmH case, a solu-
tion of this equation is found that mpﬁmmwm the conditions at the bounda-
ries of the plate, the bending and twisting Bwaoﬁm can be o&o&pmma
“from Egs. (101) and (102). - The ooﬂomvobgbmvboﬂgmw and mﬁmmdcm
stresses are found from Eq. (44) m,d& the expression

60
Aﬂhtv max — }mﬁ»\

Equations (c) and (d) are used to determine the shearing forces Q. and

@y, from which

et My | M. _ 0 (0w | OMw) - 106
’ ‘ Q- = m% o T Ibﬁmm% R (106)
oM, oM., 0 (3% 9w 107

Q= %\ — ~ Py A%N T o | (107)

or, using the symbolic form,

Q. = ..,UW (Aw) Q,=—-D W (aw) (108)

| "The shearing mﬁo.mmmm 72, and 7, can now be determined by mmmﬂ.pd&bm
that they are distributed across the thickness of the plate according to
the parabolic law.2 Then

(Ty=)max = =

Aﬂnuv max

[\l

Q.
h

[\VIRVV)

Qy
h

1 This equation was obtained by Lagrange in 1811, when he was examining the
memoir presented to the French Academy of Science by Sophie Germain. The
history of the development of this equation is given in J. Todhunter and K. Pearson,
 “History of the Theory of Elasticity,” vol. 1, pp. 147, 247, 348, and vol. 2, part 1, p.
263.  See also the note by Saint Venant to Art. 73 on page 689 of the French transla-
tion of ‘“Théorie de U'élasticité des corps solides,” by Clebsch, Paris, Hmww .
" 27Tt will be shown in Art. 26 that in certain cases this assumption is in agreement

with the exact theory of _u.mu&um of plates.

SMALL DEFLECTIONS OF LATERALLY LOADED PLATES 83

It is seen that the stresses in a plate can be calculated provided the
deflection surface for a given load distribution and for given boundary
conditions is determined by iritegration of Eq. (103). ' .

22. Boundary Conditions. - We begin the discussion of mosbamq, con-
ditions with the case of a rectangular plate and assume that the z and
v axes are taken parallel o the cides nf tha nlate

Built-in Edge. If the edge of a plate is built in, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the built-in edge to be given by z = @, the bound-
ary conditions are : ,

om0 (55) =0 | (109)

Simply Supported Edge. If the edge x = a of the plate is simply sup-
ported, the deflection w along this edge must be zero. At the same time
this edge can rotate freely with respect to the edge line; 1.e., there are no
bending moments M, along this edge. This .
kind of support is represented in Fig. 49. The
analytical expressions for the boundary condi-
tious in this case are

{ 32w 3w

Fry .T v%vuﬂn HOA:OV

ASV s=a =0

Fia. 49

Observing that 9*w/dy? must vanish together with w along the rectilinear
edge = = g, we find that the second of the conditions (110) can be
rewritten as 0’w/822 = 0 or also Aw = 0. Equations (110) -are..there-
fore equivalent to the equations

A\Evann =0 Abgvnﬂn = O S.HHV

which do not involve Poisson’s ratio ».
m.«.% Edge. 1If an edge of a plate, say the edge z = a (Fig. 50), is
entirely free, it is natural to assume that along this edge there are no

bending and twisting moments and also no vertical shearing forces, 7.e
that ,

*2

AN—&RVNNR =0 Aghw\vnwn =0 A@Hv,ﬂ“@ =0

The boundary conditions for a free edge were expressed by Poisson! in
this form. But later on, Kirchhoff? proved that three boundary con-
ditions are too many and that two conditions are sufficient for the com-
plete determination of the deflections w satisfying Eq. (103). He showed

1 m.om the discussion of this subject in Todhunter and Pearson, op. cit., vol. 1, p. 250
and in Saint Venant, loc. cit.

28ee J. Crelle, vol. 40, p. 51, 1850.

2
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Fig. 131c. It is seen that the radial moments become negative at some distance from
the load, their numerically largest value being about —0.02P. The positivegmoments
are infinitely large at the origin, but at a small! distance from the point of application
of the load they can be easily calculated by taking the function kei z in the form (7).
Upon applying formulas (52) and (53) to expression (179}, we arrive at the results

! As compared with the characteristic length { = Qb\\n.

M
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P 21 1
M,=— |04+ »{log— —7v}j—50—-1»
4 T 2
(182)
P 21 1
M:=— | @ +»{log——7v]+ 51—
4 r 2

A comparison of the foregoing expressions with Egs. (90) and (91) shows that the
stress condition in a plate in the vicinity of the load in Hertz’s case is identical with
that of a simply supported circular plate with a radius ¢ = 2le~? = 1.123!, except for

P .
a moment M, = M; = — — (1 — »), which is superimposed on the moments of the
g

circular plate. )

Let us consider now the case in which the load P is distributed over the area of a
circle with a radius ¢, small in comparison with I. The bending moments at the center
of a circular plate carrying such & load are

P
My=M. =0 +wnlogl+1 (m)

4 c

This results from Eq. (83), if we neglect there the term c%/a? against unity. By
substituting a = 2le~7 into Eg. (m) and adding the moment —F/8x(1 — »), we obtain
at the center of the loaded circle of the infinitely large plate the moments

(1 + P 2! Y
Mupay = ——— { log = —
o g~ + i (n)
1+ %« ! \
Mupez = ————{ log = 4 0.61
or /omn+omm\% (183)

Stresses resulting from Eq. (183) must be corrected by means of the thick-plate theory
in the case of a highly concentrated load. Such a corrected stress formula is given on
page 275.

In the case of a load uniformly distributed over the area of a small rectangle, we may
proceed as described in Art. 37. The equivalent of a square area, in particular, is a
circle with the radius ¢ = 0.57u, u being the length of the side of the square (see page

162). Substituting this into Eq. (183) we obtain

1 !
Mons = 22 p(10g L 41177 ()
47 u

The effect of any group of concentrated loads on the deflections of the infinitely
large plate can be calculated by summing up the deflections produced by each load
separately.

69. Rectangular and Continuous Plates on Elastic Foundation. An
example of a plate resting on elastic subgrade and supported at the same
time along a rectangular boundary is shown in Fig. 132, which represents
a beam of a rectangular tubular cross section pressed into an elastic
foundation by the loads P. The bottom plate of the beam, loaded by
the elastic reactions of the foundation, is supported by the vertical sides
of the tube and by the transverse diaphragms indicated in the figure by
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dashed lines. It is assumed again that the intensity of the reaction p at
any point of the bottom plate is proportional to the deflection w at that
point, so that p = kw, k being the modulus of the foundation.

In accordance with this assumption, the direrentiai €(guailoil 10t uwic
deflection, written in rectangular coordinates, becomes

04w o'w g kw
PR - maﬁl*.w &»@@.T(!b D (@)
——ea o
0 lm < Where g, as before, is the intensity of the lateral
b"2 load.
R Let us begin with the case shown in Fig. 132.
y J If w, denotes the deflection of ﬁpm mmmmm. of the
: bottom plate, and w the deflection of this plate
p P @ with respect to the plane of its boundary, the
) — intensity of the reaction of the foundation at
m any point is k(w, — w), and Eq. (¢) becomes
M A Adw = E (e — ) ®)
VSIS TS IS D ‘
- <,wa ' Taking the coordinate axes as shown in the
1G.

figure and assuming that the edges of the plate
parallel to the y axis are simply supported and the other two edges are
clamped, the boundary conditions are

o*w
Agv&“e.nﬂn =0 A%V&Ho.ﬁﬂ& =0 Aﬁv

) ow
W) yeape = O hhast =0 d
() ymsr2 .mw\v_\uwv\m (d)

The defiection w can be taken in the form of a series:
» . mrz
sin

_ 4kwg A.IA, v w MAT
® = D \sa 5 Ly e 9
= .05 m

\

The first series on the right-hand side is a particular solution of Eq. ()
representing the deflection of a simply supported strip resting on an
elastic foundation. The second series is the solution of the homogene-
ous equation

‘ Adw + me w=0 (H
Hence the functions V., have to satisfy the ordinary differential equation

22 ¢ s
VIV 9 wls»|“~.| Y+ Ashs. -+ bv Yn=20 (9)

a* D
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Using notations
—_ Nn — )\ 4 N

-~ e o T a

LPm F NV b TN T i Lim = Voem Uy w
and taking the solution of Eq. (g) in the form e, we obtain for r the
following four roots:

B+iy —B+dv B—iv

The corresponding four independent particular solutions of Eq. (¢) are

—B — v

QRSQ COS J\EW\ ®|ui§ cOS Jxﬁ@ QREQ MWS \%ﬁ_‘w\ &lu:é m:u. J\SQ A.N.v

which can be taken also in the following form:

cosh 8,y cos vy

sinh By cos v,y I
cosh By sin vy ®

sinh By sin vYmy
From symmetry it can be concluded that ¥, in our case is an even fune-
tion of y. Hence, by using integrals (k), we obtain
Vi = A, cosh Bny €08 Yy + B, sinh Buy sin vmy
and the deflection of the plate is
-

, . mmx * 4kwg 1
w = 3 sin ———

L " 5 " sAsau + b\

m=1,3,5,.
+ A, cosh 8.y €08 ¥,y + Bn sinh B,y sin vy )

This expression satisfies the boundary conditions (¢). To satisfy con-
ditions (d) we must choose the constants 4, and B, so as to satisfy the
equations

v + A, F Ym0
D As}l P cosh cos 5
m at D .
-+~ B, sinh Py .
P (m)
(Anfin + Buya) sink 220 cos L
— (AmY¥m — BaBn) cosh % mwm.\xm_w =0

Substituting these values of 4, and B,, in expression (1), we obtain the
required deflection of the plate.
The problem of the plate with all four edges simply supported can be

solved v% using Eq. (a). Taking the coordinate axes as shown in Fig. 59
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(page 105) and using the Navier solution, the deflection of the plate is

_ . mmr . nwy .
QIMM\».&.mElﬂmEﬂ (n)

m=1n=1

In similar manner leg the series

q= M Meimiﬁwﬂ‘&mmbwﬁlw (0)

m=1 n=1
represent the distribution of the given load, and the series

ﬁu?uMMiimE@@mEmw& (p)

a

represent the reaction of the subgrade. Substituting the series (n) in
the left-hand side and the series (o) and (p) in the right-hand side of
Eq. (@), we obtain

— @aﬁ
Ape = = = (@)

As an example, let us consider the bending of the plate by a force P
concentrated at some point (£,7). In such a case

Omn = — Sin —— sin —— (r)

by Eq. (b) on page 111. By substitution of expressions (¢) and (r) into
Eq. (n) we finally obtain

mré Sﬁd

4P - sin a sin b © mrz n

[ p— . . nm

W= M M o \? sin —= sin % (s)
m=1 n=1 D A% .+.|v lTNn

mvw
Having the deflection of the plate produced by a concentrated force
the deflection produced by any kind of lateral loading is obtained by gm
method of superposition. Take, as an example, the case of a uniformly
distributed load of the intensity q. Substituting ¢ d¢ dn for P in expres-
sion (s) and integrating between the limits 0 and a and between 0 and b
we obtain ,
mrzx nwy

._,@Q = - sin IQ\|. sin l@]
2 o (m: n 2 ®
mn | 7D pey + 7/ + NL

w =

m=13,5,... n=13,5,..

€
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When & is equal to zero, this deflection reduces to that given in Navier
solution (131) for the deflection of a uniformly loaded plate.!

Let us consider now the case represented in Fig. 133. A large plate
which rests on an elastic foundation is loaded at equidistant points along
the z axis by forces P.* We shall take the coordinate axes as shown in

Fie. 133

the figure and use Eq. (f), since there is no distributed lateral load. Let
us consider a solution of this equation in the form of the series

©

w=wy + M W\SOOmE (u)

a
m=246, .
in which the first term

P Ay . ANy
wo = Y e—™M/VZ ([ cos =& + sin —=
T 2 2dk A V2 V2

_represents the deflection of an infinitely long strip of unit width parallel
to the y axis loaded at y = 0 by a load P/a [see Eq. (283), page 471].
The other terms of the series satisfy the requirement of symmetry that
the tangent to the deflection surface in the z direction shall have a zero
slope at the loaded points and at the points midway between the loads.
We take for functions Y, those of the particular integrals () which
vanish for infinite values of y. - Hence,

Y, = Anme Pt coS Ymy + Bme Pn¥ sin vy

‘To satisfy the symmetry condition (dw/0y)y—0 = 0 we must take in this

expression
mq:k»s
Yrm

B, =

1The case of a rectangular plate with prescribed deflections and moments on two
opposite edges and various boundary -conditions on two others was discussed by H. J.
Tletcher and C. J. Thorne, J. Appl. Mechanics, vol. 19, p. 361, 1952. Many graphs
are given in that paper.

* This problem has been discussed by H. M. Westergaard; see Ingenigren, vol. 32,
p. 513, 1923. Practical m@@:om.e.monm of the solution of this problem in concrete road
design are discussed by H. M. Westergaard in the journal Public Roads, vol. 7, p- 25,
$wmm<o_.5_?mw_5mm“ and vol. 14, p. 185, 1933. )




