Module 4-14

HMA Overlays of Rigid Pavements

HMA Overlays

Hot-mix asphalt indicates high-quality asphaltic concrete mixtures produced in a facility

Functional overlays

- Minimum thickness
- Typically 25 to 100 mm (1 to 4 in)

Structural overlays

- Thickness based on projected traffic
- Typically 75 to 200 mm (3 to 8 in)

Considerations for Overlay Selection

Construction feasibility

- Traffic control
- Constructability
- Clearances and elevation changes

Performance period

Reflection cracking

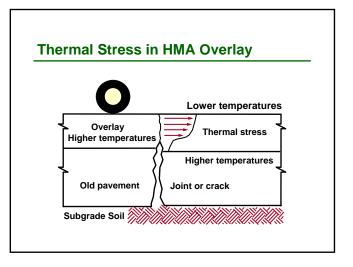
Permanent deformation

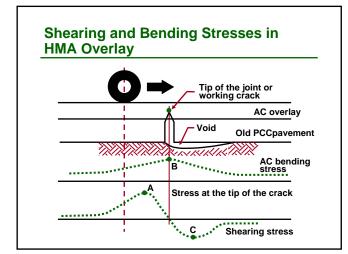
HMA Overlay Design Approaches

Mixture

Thickness

- Engineering judgment
- Structural deficiency
- Mechanistic fatigue damage


Reflection Cracking


Appears on surface above underlying joints and cracks

Caused by movement at joints and cracks

- Low temperatures
- Traffic loads

Initiates at bottom of HMA overlay and propagates upward

Design Issues

Rate of propagation through overlay

Number of reflected cracks

Rate of deterioration of reflected cracks

Amount of water that can infiltrate through the cracks

Reflection Crack Control Measures

Fabrics

Stress-relieving interlayers

Crack-arresting interlayers

Pre-overlay repairs

Fractured slab techniques

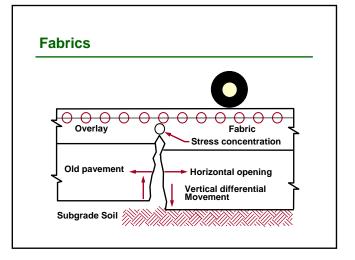
Sawing and sealing joints

Increased overlay thickness

Crack Control Effectiveness

Delay the occurrence of cracking Reduce the number of cracks Control the crack severity Provide other benefits

- Reduce overlay thickness
- Enhance waterproofing capabilities



Woven or non-woven synthetic materials

Provide restraint to resist crack formation

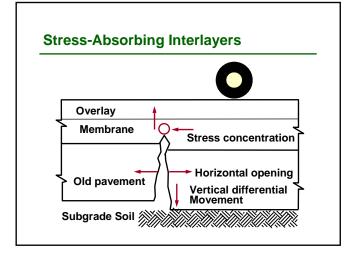
Most effective with smaller joint movements

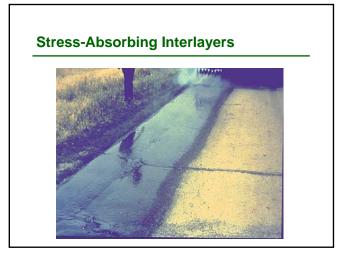
- Longitudinal joints
- Differential vertical movements between 0.08 and 0.20 mm

Fabric Application

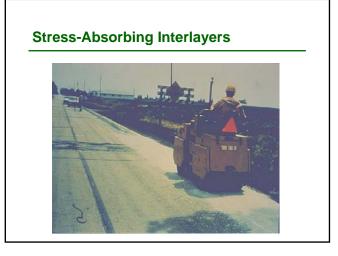
Deflection	Fabric	Control
0.00 mm	0	44
0.05 mm	29	54
0.10 mm	88	74
0.15 mm	88	100
0.20 mm	100	100

Stress-Absorbing Interlayers

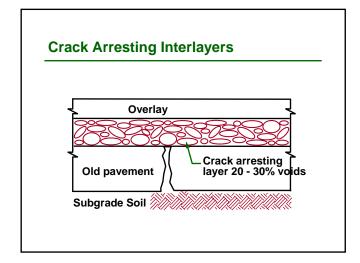

Dissipates movements and stresses


Ineffective for working cracks or large movements

SAMIs


- Spray application of rubber or polymermodified asphalt
- Seating of aggregate chips

Proprietary materials available (usually band-aid treatments)


Stress-Absorbing Interlayers

Effect on Reflection Cracking

Material	Trans.	Long
Polyguard 665	35 %	0.3 %
Royston #108	90 %	0 %
Royston #10AR	35 %	0 %
PavePrep	5 %	2 %
Roadglas	29 %	0 %
Biuthene H.D.	50 %	0 %
Petrotac	30 %	0 %

Preoverlay Repairs

Slab stabilization

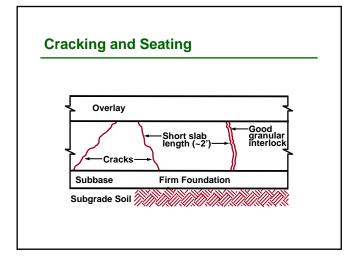
- Grinding/milling
- Full- and partial-depth repairs
- Slab replacement
- Load transfer restoration
- Retrofitted subdrainage

Fractured Slab Techniques

Crack and seat (JPCP)

Break and seat (JRCP)

Rubblize (JPCP, JRCP, CRCP)


Cracking and Seating

Shortens effective slab length

Standard practice in many States

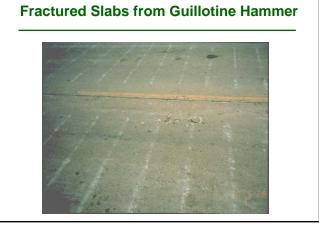
Not recommended on poor subgrades

Design methods (overlay thickness)

Favorable Conditions for Cracking and Seating

Seriously faulted joints and cracks Working cracks Rocking slabs Patch deterioration Lane separation Durability distress Corner breaks

Important Factors


Quality of subgrade Severity of deterioration Size of broken pieces Full-depth cracks Weight of roller

Types of Equipment

Modified pile drivers Guillotine hammers Whip-hammers Impact hammers

Breaking and Seating

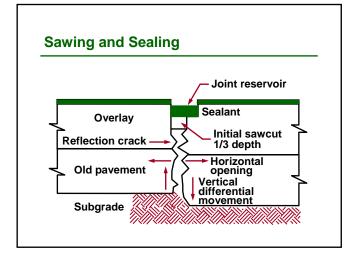
Additional issues (by contrast with crack and seat)

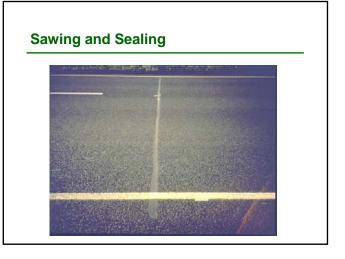
- Break bond between concrete and steel
- Effect on underlying structures

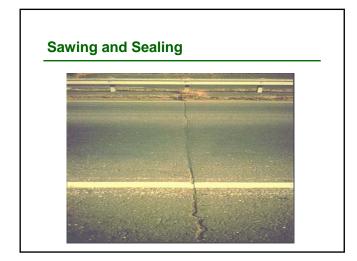
Rubblization

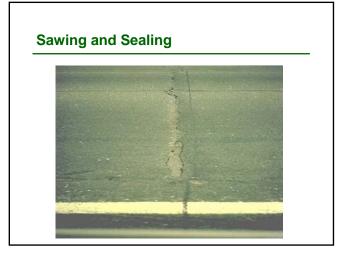
Break existing rigid pavement into small pieces - high quality aggregate base

Equipment - Resonant Frequency Pavement Breaker

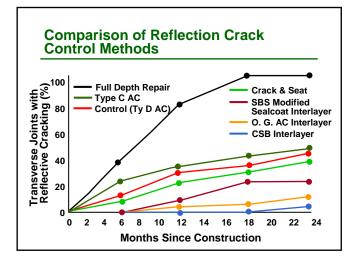


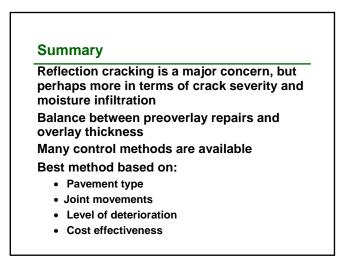

Equipment




Sawing and Sealing

Concede appearance of reflection cracking Objective: control rate of deterioration Reduces spalling of reflection cracks Candidates should have well-defined joints Sawcut must be directly above the underlying joint


Slab Length	Width	Depth	
< 15.2 m	13 mm	16 mm	
15.3 – 18.9 m	16 mm	16 mm	
18.9 – 22.9 m	19 mm	16 mm	
19.0 – 26.5 m	22 mm	19 mm	
26.5 – 30.5 m	25 mm	22 mm	


Increased Overlay Thickness

Delays the occurrence of reflection cracking

Cracks propagate about 25 mm per year

Reduces temperature fluctuations in underlying pavement

