Module 4-13

PCC Overlays

Objectives

List PCC overlay types

Discuss importance of bonding condition

Identify conditions for which each overlay type is most suitable

Describe thickness design approaches

Determine the amount of preoverlay repair required

Construction Feasibility

Traffic control

- Constructability
- **Contractor experience**
- **Clearances and elevation changes**
- **Environmental constraints**

Construction of Bonded Overlay

Construction of Bonded Overlay

Overlay Design Approaches

PCC Mix

- Thickness
- Engineering judgment
- Structural deficiency
- Mechanistic fatigue damage

Design Considerations

Overlay thickness (thick vs. thin) Bonding condition

Drainage

Reinforcement

Transverse and longitudinal joints

Factors Affecting Preoverlay Repairs

Type of overlay

- Structural adequacy
- **Pavement condition (distress)**
- **Future traffic loadings**
- **Physical constraints**
- **Overall cost**

Repairs for Bonded PCC Overlays

Full-depth repair of deteriorated joints

Load transfer restoration or full- depth repair of working cracks

Grinding of minor joint faulting

Cross stitching on working longitudinal cracks

Repairs for Unbonded PCC Overlays

Full-depth repair of severely deteriorated joints and cracks

Milling/grinding of faulting > 6 mm (0.25 in)

Full-depth repair of punchouts on CRCP

Repairs for Whitetopping

Localized repair of failed areas

Cold milling

- Restore profile
- Remove rutting and shoving

Leveling course to produce uniform surface for paving

Summary

Bonded overlays - good condition

Unbonded overlays - poor condition

Whitetopping - deteriorated HMA

All types have performed well when used appropriately

The type and amount of preoverlay repairs affects performance