Module 4-12

Recycling Concrete Pavements

Objectives

Identify conditions for recycling

Identify potential benefits

Describe the recycling process

Describe properties of recycled aggregate and concrete

Describe implications to mix design and structural design

Reasons to Reconstruct

Little or no remaining life Substantial foundation movement

Extensive joint deterioration

Extensive durability problems

Outdated geometric standards

Concrete Recycling

Break up the existing pavement

Haul to crushing plant

Use as aggregate for new concrete

Recycled coarse aggregate is more useful

Pavements with durability problems can be recycled

Reasons for Recycling

Dwindling landfill space Increasing disposal costs Conservation of materials Scarcity of high-quality aggregate Reduction in project cost

Uses of Recycled Concrete Aggregate

- HMA pavements PCC pavements Aggregate bases Stabilized bases Fill material
- Filter material
- Drainage layer

Limitations

Harsher mix (less workability)

Lower strengths

Higher shrinkage

Greater thermal expansion

Less abrasion resistance

Demolition HMA Surface Removal

Potential Contaminants

Reinforcing steel Dowel bars and baskets Chemical admixtures Deicing salts Oil Joint sealant Material from underlying layers

Plant Operations - Steel Removal

Comparison of Aggregate Properties

Property	Virgin	RCA
Shape	Varies	Angular
Texture	Varies	Rough
Absorption, %	0.8-3.7	3.7-8.7
Specific Gravity	2.4-2.9	2.1-2.4
L.A. Abrasion, %	15-30	20-45
Sodium Sulfate, %	7-21	18-59
Magnesium Sulfate, %	4-7	1-9
Chloride Content, kg/m ³	0-1.2	0.6-7.1

PCC Mix Design

Follow conventional mix design

Adjust the amount of each component

Limit recycled fines to 30 %

Substitute portion of cement with flyash

Require higher air content

Concrete Properties

For same water-cement ratio

- Up to 40% lower compressive strength
- 20-40% lower elastic modulus
- 8% lower flexural strength

Greater resistance to freeze-thaw

Greater resistance to D-cracking

HMA Mix Design

Requires more asphalt cement

Less need for anti-stripping agent

Design Considerations

Properties affecting design

- Smaller aggregate top size
- Lower abrasion resistance

Design recommendations

- Use dowels at all transverse joints
- Use higher reinforcement contents
- Use stiffer foundation

Construction Consideration

Techniques and equipment are the same as those for normal construction

Cost Benefits

RCA production costs = \$8-11/ton

Virgin aggregate costs = \$13-15/ton

Eliminate disposal costs

Project savings up to 65% have been reported

Summary

Recycling is cost-effective alternative (scarcity of virgin aggregate)

Requires adjustment to mix design and pavement design

Good performance has been reported

No specialized techniques or equipment