Module 4-8

Diamond Grinding and Grooving

Objectives

Describe diamond grinding and grooving

Describe conditions under which the methods will be beneficial

Describe equipment and construction problems

Distinguish from cold milling

Diamond Grinding

Uses closely-spaced, diamond saw blades mounted on a rotating drum

Removes weathered concrete

Corrects surface irregularities

Provides smooth riding surface

Diamond Grooving

Uses diamond saw blades spaced 19 mm (0.75 in) apart

Cuts grooves into the concrete

Reduces incidence of hydroplaning

Used on flexible and rigid pavements

Cold Milling

Uses drum-mounted carbide steel cutting bits

Chips off the pavement surface

Removes deteriorated areas

Prepares surface for an overlay

More common on HMA pavements

Benefits of Diamond Grinding

Removes faulting

Removes wheel path wear

Removes joint warping

Provides texture to polished surface

Improves slope and drainage

Selection of Projects for Diamond Grinding

IGGA / ACPA Criteria

- PSI between 3.8 and 4.0
- Before faulting reaches critical levels

Does not address structural problems

Need to address the cause of distress

Not effective for durability problems

Hardness of aggregate affects costs

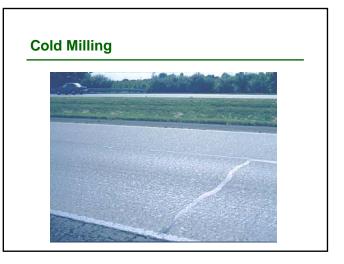
Selection of Projects for Diamond Grooving

Potential locations for wet weather accidents

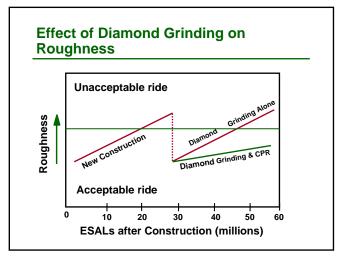
- Horizontal curves
- Interchanges
- Entire project

Pavements should otherwise be structurally and functionally sound

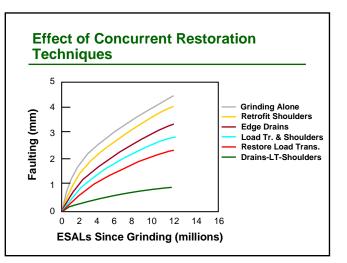
Selection of Projects for Cold Milling

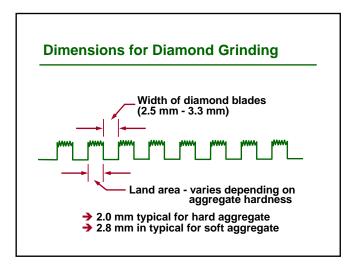

Not recommended for final texturing

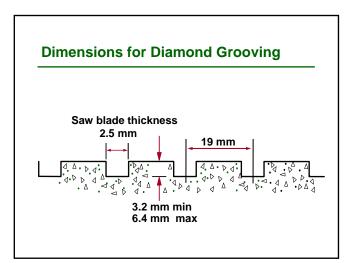
- Produces a rough surface
- Creates spalls at transverse joints


Uses on concrete pavements

- Restore surface friction (modified)
- Provide surface for bonding overlays
- Remove material for partial-depth repairs






Location	Before	After 2 Years
AL	1.86	0.92
AZ	1.99	0.58
GA	1.55	0.63
NY	2.35	0.60
SD	1.45	0.58
Average	1.85	0.66

Year	NB Lane	<u>SB Lane</u>
0 (before)	31	29
0 (after)	40	44
1	49	45
2	40	42
3	34	34
4	34	33
5	33	33

Acceptance Criteria for Diamond Grinding

Similar criteria as for new construction Profile measurements

- California profilograph
- K.J. Law Profilometer
- Mays Ridemeter

Skid resistance

- Ribbed tire (ASTM E 501)
- Smooth tire (ASTM E 524)

Cost Considerations

Diamond grinding

- Soft aggregate
- Med. aggregate
- Hard aggregate

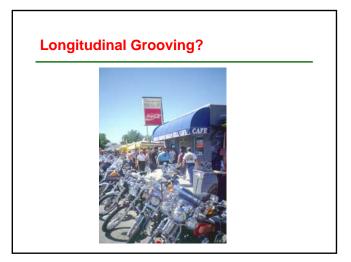
Diamond grooving

• Depends on hardness of aggregate

\$2.40-3.60 /m²

\$3.60-6.00 /m²

\$6.00-9.60 /m²


• Range from \$1.80-3.00 /m²

Construction Considerations for Diamond Grinding

Disposal of slurry (vacuum) New equipment produces smooth surface Continuous operation for best results Begin and end perpendicular to centerline Maximum overlap of 50 mm (2 in)

Construction Considerations for Diamond Grooving

Disposal of slurry (no vacuum)

Groove dimensions

- Width = 2.5-3.3 mm
- Depth = 3.2-6.4 mm
- Spacing > 19 mm

Conducted in longitudinal direction

Most often performed only in localized areas

Construction Considerations for Cold Milling

Should use micro-milling specifications

Spalling of transverse joints

Carbide bits require frequent maintenance and replacement

Conducted in longitudinal direction

Requires close monitoring of equipment

Summary

Diamond grinding and grooving correct surface deficiencies

Do not address structural problems

Most effective with other restoration techniques

Cold milling is not widely used on concrete pavements