Module 4-5

Full-Depth Repairs

Objectives

Describe alternative methods

Identify repair areas

Design acceptable repairs

Describe proper construction procedures

List specific materials and procedures

Introduction

Full-depth concrete repairs

- JPCP
- JRCP
- CRCP

Full-depth bituminous patches are not recommended

Purpose

Restore rideability

Prevent further deterioration of distressed areas

Prepare for an overlay

Candidate Distresses (JCP)

Blowup (L, M, H)

Corner break (L, M, H)

D-cracking (M, H)

Deterioration of or near repairs (M, H)

Longitudinal cracking (M, H)

Spalling (M, H)

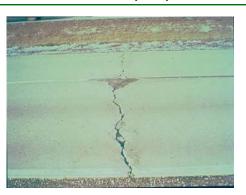
Transverse cracking (M, H)

Candidate Distresses (CRCP)

Blowup (L, M, H)

D-cracking (M, H)

Deterioration of or near repair (M, H)


Localized distress (M, H)

Longitudinal cracking (M, H)

Punchout (L, M, H)

Transverse cracking (M, H)

Candidate Distresses (JCP)

Candidate Distresses (JCP)

Effectiveness

Can provide good long-term performance (>10 years)

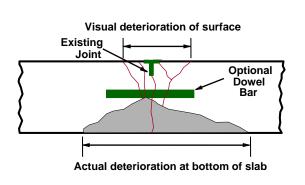
Critical factors

- · Timing of repairs
- Proper load transfer design
- Quality of construction

Design Considerations

Selecting repair boundaries

Multiple-lane repairs


Repair materials

Load transfer design

Curing and opening to traffic

Cost considerations

Potential Extent of Deterioration at Joint

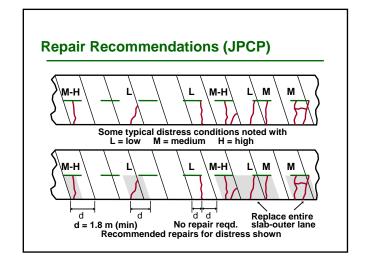
Minimum Repair Dimensions (JCP)

Doweled or tied repairs

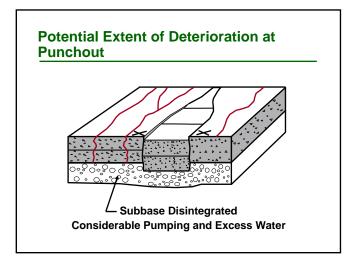
- Length ≥ 1.8 m (6 ft)
- Width ≥ 3.6 m (12 ft)

Non-doweled or non-tied repairs

- Length ≥ 1.8 m (6 ft) for low traffic
 - ≥ 2.4 m (8 ft) for med-high traffic
- Width ≥ 3.6 m (12 ft)


Guidelines for Selecting Repair Boundaries (JCP)

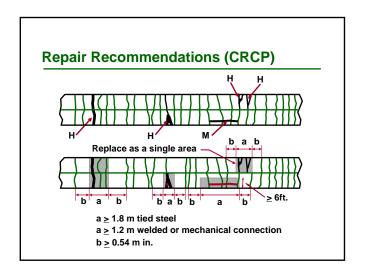
Repairs longer than 4.6 m (15 ft) require an intermediate joint


Repairs should be 1.8 m (6 ft) from transverse joints and cracks

Extend repairs 0.3 m (1 ft) beyond joints

Cracks located 3 m (10 ft) or more from a joint can be repaired alone

Guidelines for Selecting Repair Boundaries (CRCP)


Minimum repair length

- 1.8 m (6 ft) if steel is tied
- 1.2 m (4 ft) if steel is mechanically connected or welded

Repairs should not be closer than 460 mm (18 in)

Minimum repair width is 1.8 m (6 ft)

Full width patches are recommended

Example Repair

Example Repair (What's Wrong?)

Example Repair (What's Wrong?)

Curing Times for Repair Materials

Blended cements 2- 4 hours
Sulfo-aluminate cements 2- 4 hours
Type III with accelerator 4- 6 hours
Type I with accelerator 6- 8 hours
Type III with water reducer 12-24 hours
Type I 24-72 hours

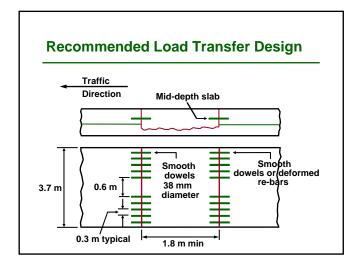
Curing and Opening to Traffic

Curing methods

- Curing compound
- Insulation blankets

Opening criteria

- Minimum strength
- Minimum time


Load Transfer Methods

Dowel bars

Tie bars

Undercutting

Aggregate interlock

Cost Considerations

Average cost about \$80/m² (\$95/yd²)

Slab replacement is preferred over several full-depth patches

- Lower cost
- More reliable repair

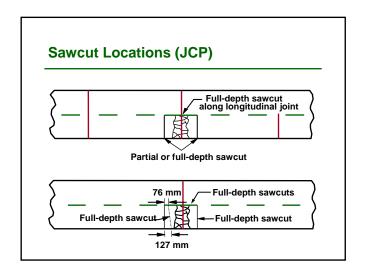
Construction Steps

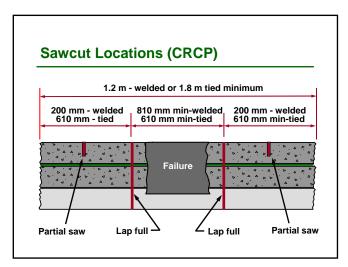
Layout repair locations

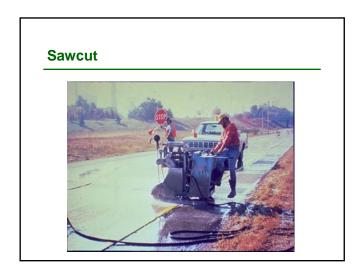
Saw concrete

Remove concrete

Prepare area


Provide load transfer


Prepare joint


Place and finish concrete

Cure

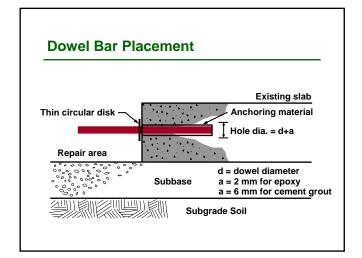
Seal joints

Concrete Removal - Lift Out Method

Concrete Removal - Lift Out Method

Concrete Removal - Lift Out Method

Problem with Lift Out Method



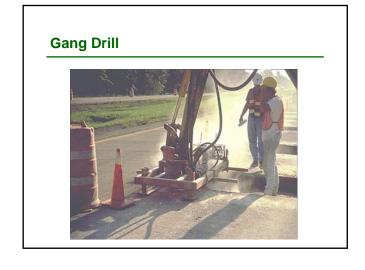
Prepare Area

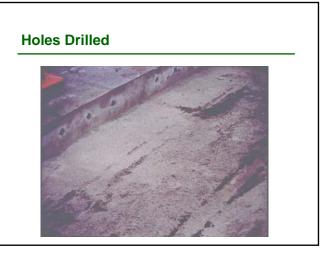
Prepare Area - Add/Recompact Base

Reinforcing Steel Placement (CRCP)

Match existing steel

Connect to existing steel


- Tied splice
- Welded splice
- Mechanical connection


Provide support (chairs) to prevent bending

Provide minimum 60mm (2.5 in) cover

Cleaning Holes (Air Blast)

Injecting Grout (or Epoxy)

Placing Dowels

Dowels in Place with Grout Retaining Washers

Area Prepared with Dowels in Place

Concrete Placement and Finishing

Avoid use of additional water for workability

Ensure adequate vibration near edges of repair

Best results with vibratory screed

Avoid over-finishing

Match surface level and texture

Curing

Methods

- Curing compound
- Wet burlap
- · Polyethylene sheeting

Insulation blankets can accelerate curing and provide higher strengths

Concrete Placement

Concrete Finishing

Application of Curing Compound

Curing - Use of Insulation Blanket

Joint Sealing

Transverse and longitudinal joints

Saw and seal as soon as possible after concrete placement

Reduces spalling and moisture infiltration

Follow procedures for joint sealing (Module 4-2)

What's Wrong Here?

...And Here?

What About This?

Summary

Bituminous patches not recommended

Repairs should address the extent of the deterioration

Slab replacement is more economical than multiple full-depth repairs

Provide load transfer (dowels) on JPCP

Restore continuity of steel on CRCP