Module 4-2

Joint Sealing

Objectives

Identify factors affecting sealant performance

Describe the steps for resealing joints

Identify sealant types, properties, and specifications

Describe factors to consider for design

Introduction

Purpose of joint sealing

- Reduce moisture infiltration
- Prevent intrusion of incompressible materials

Transverse contraction joints are generally most critical

Longitudinal joints are sometimes sealed

Sealant Materials

- Thermoplastic materials Hot-applied Cold-applied
- Thermosetting materials Chemically cured Solvent release
- Preformed compression sealants

Guidelines for Resealing

Reseal when no longer functional

- Missing or damaged sealant
- Poor bonding to joint face
- Incompressibles in joint

Resealing most effective when:

- Pavement is not severely deteriorated
- Performed with other restoration activities

Moderate installation temperatures

Proper joint preparation is essential

Sealant Material Performance

Performance life varies by material type

Recent studies suggest silicone sealants are the most cost effective

Several on-going studies

- SHRP H-106
- SPS-4 studies
- United Kingdom

Effect on Pavement Performance

Some debate as to the effectiveness of joint resealing

Most states continue to reseal joints

Some believe the benefits do not offset the costs, especially under certain conditions

Shape Factor

Ratio of sealant width to depth (W/D) Stresses based on shape of sealant Design should consider strain and deformation Recommended shape factors

- 1:1 to 1:2 for hot-poured sealants
- 2:1 for silicone sealants

Backer rod is highly recommended

sphalt cement	0.11 - 0.33
Fiberized asphalt	0.33 - 0.55
Rubberized asphalt	0.44 - 1.10
Polysulfide	2.21 - 2.76
Polyurethane	6.08 - 7.18
Silicone	5.52 - 7.73

Transverse Joint Resealing Steps

- · Remove old sealant
- Reface joint sidewalls
- Clean joint reservoir
- Install backer rod
- Install new sealant

Sealant Installation (Thermosetting Materials)

Longitudinal Joint Sealing

PCC/PCC joints

- Limited movements (typically tied)
- Hot-poured thermoplastic materials used
- No reservoir is formed or needed

PCC/HMA joints

- Large vertical and horizontal movements
- 25-mm width (minimum) and depth
- No backer rod required
- Hot-pour and silicone sealants used

Equipment

Removing / refacing

- Joint plow
- Diamond-bladed saw
- Routers

Cleaning

PlacingMelters

- Air-blast Sand-blast
- Silicone pumps
- Applicators

Summary

Reduce moisture infiltration and prevent intrusion of incompressibles

Most effective when little deterioration

Some debate as to the effect on pavement performance

Good installation practices are essential