Module 4-1

Rigid Pavement

 Overview
Objectives

Identify rigid pavement layers
Describe the rigid pavement responses
Describe fundamental materials

- New construction
- Rehabilitation

PCC Composition
$\left.\begin{array}{l}\text { Coarse aggregate } \\ \text { Fine aggregate }\end{array}\right\}$Separated by 4.75 mm sieve
$\left.\begin{array}{l}\text { Portland cement } \\ \text { Water } \\ \text { Admixtures }\end{array}\right\}$Control water- cement ratio

Types of Rigid Pavement

Jointed plain concrete pavement (JPCP)

- No reinforcement
- Short joint spacing (4 to 6 meters)

Jointed reinforced concrete pavement (JRCP)

- Wire or mesh reinforcement (0.1 to 0.3%)
- Long joint spacing (7 to $\mathbf{3 0} \mathbf{~ m}$)

Continuously reinforced concrete pavement (CRCP)

- Continuous reinforcement (0.6 to $\mathbf{0 . 8 \%}$)
- No contraction joints

Rigid Pavement Responses

Rigid structures (high modulus)
Distribute applied loads over wide area
About 10 times stronger in compression than in tension

Most concerned with tensile strength

Thermal-Gradient Related Stresses

Temperature differential between the top and bottom of the slab

Moisture-Gradient Related Stresses

Variations in moisture content between top and bottom of slab

Concrete Pavement Materials

Type I (a).......Normal
Type II (a).......Moderate heat of hydration Moderate sulfate resistance
Type III (a)......High early strength
Type IV...........Low heat of hydration Low strength gain
Type V............High sulfate resistance
a = air entraining agent

Other Stresses

Shrinkage stresses
Internal stresses

- Durability cracking
- Alkali-silica reactivity

Concrete Pavement Materials Type I (a).......Normal Type II (a).......Moderate heat of hydration \quad Moderate sulfate resistance Type III (a)...... High early strength Type IV.......... Low heat of hydration Type V...........High sulfate resistance $a=$ air entraining agent

Summary

PCC is a rigid, durable material
Composition of aggregates (coarse and fine), cement, water, and admixtures

Tensile stresses are most critical
Stresses caused by several mechanisms

