Module 3-10

Hot Mix Asphalt Overlays

Objectives

List deficiencies which can be corrected

Identify conditions that are best suited and most cost-effective

Determine if need is functional or structural

Determine feasibility and extent of preoverlay repair

Describe thickness design approaches

Introduction

Most popular method

Relatively fast and cost-effective means for:

- Correcting deficiencies
- Restoring user satisfaction
- Adding structural capacity

Poor performance is NOT uncommon

Definitions

Functional performance - Ability to provide a safe, smooth riding surface

Structural performance - Ability to carry traffic without distress

Empirical - Design based on past experience or observation

Mechanistic - Design based upon engineering mechanics

Purpose and Applications

General (HMA and PCC)

- Improve functional and/or structural characteristics
- Factors to consider in comparing HMA and PCC overlays

Purpose and Applications

Specific (HMA)

- Wide range of applications Road surface categories Climate and support conditions
- Typical characteristics
 Dense graded HMA
 Flexible or rigid surface
 25 to 200 mm thickness
- Mill and Fill

General - Recognize why many overlays fail prematurely

- Improper selection
- Wrong type
- Inadequate design
- Insufficient preoverlay repair
- Lack of consideration of reflection cracking

Limitations and Effectiveness

Specific are defined by:

- Distress exhibited
- Intended design life
- Availability of quality materials

Ways to improve effectiveness

- Pre-overlay treatments
- Better materials and practices
- Sound engineering judgement

Preoverlay Treatment and Repair

Dependent upon:

- Type of overlay
- Structural adequacy of existing pavement
- Existing types of distress
- Future traffic
- Physical constraints
- Cost

To Repair or Not to Repair

3. Controlling Reflection Cracking

Geotextiles or fabrics

Stress relieving or stress absorbing membrane interlayers

"Band aid" type crack sealants

4. Drainage Corrections

Drainage survey

Identify moisture / drainage related distresses

Develop solutions that address moisture problems

Two Aspects of Overlay Design

Asphalt mixture

- Fatigue cracking
- Permanent deformation
- Thermal cracking
- Moisture susceptibility

Overlay Thickness

- Engineering judgement
- Deflection approach
- Structural deficiency
- Mechanistic approach

Summary

Functional vs. structural

Applications, limitations and effectiveness

Preoverlay repair issues

Approaches to overlay thickness design