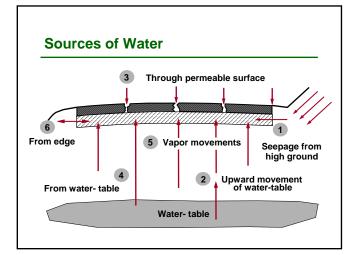
Module 2-5

Drainage Survey and Evaluation

Objectives

List distresses caused by moisture Define drainage factors Describe principle behind drainage time List properties that influence drainability Impact of moisture on pavement distress


Definitions

Moisture

- Infiltration
- Lateral seepage through natural soils
- Capillary action from underlying water table

Drainage

- Removal of moisture from pavement
- Prevent entry of moisture into pavement

Moisture Related Distress Survey

Ditches clear of standing water ?

Ditches and pavement edge clear of grass/weeds ?

After a rain, is water flowing from joints or cracks ?

Are typical signs of pumping evident ?

Visual Evaluation

If sub-drainage is present, can the outlets be found and are they clear of debris ?

Are inlets clear and functioning ?

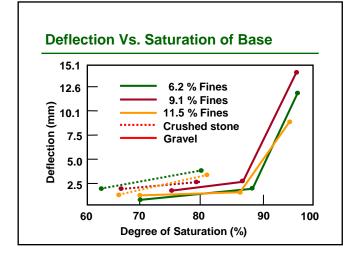
Are the joints or cracks sealed ?

Is the sealant in good condition ?

External and Internal Drainage Factors

External drainage factors - climate

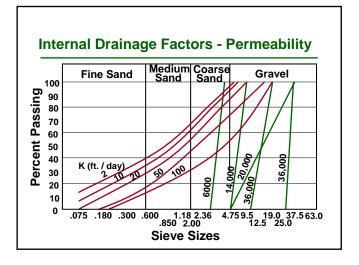
• Local climatic information

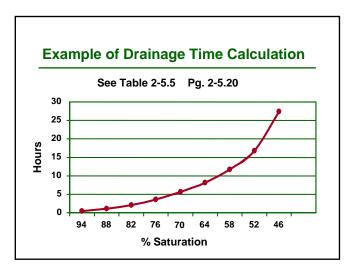

Precipitation used to estimate frequency that any granular layer at or near saturation

Temperature used to estimate effects of freezing on base and subgrade soil layers

Internal Drainage Factors

Roadway geometry and material properties


- Drainability
- Permeability
- Physical geometry of roadway
- Soil type
- Topography
- Water table
- Existing drainage facilities



Internal Drainage Factors - Drainage Time

May be calculated for any given material and roadway section. Inputs include:

- · Permeability
- · Layer thickness and width
- Drainage time
- Porosity
- · Longitudinal and transverse grade

Internal Drainage Factors

Critical drainage time - Based on 85% saturation time related to the

- Performance of jointed PCCP
- Less than 5 hr. to 85% considered acceptable
- 5 hr. to 10 hr. marginal condition
- Greater than 10 hr. considered unacceptable

Internal Drainage Factors

Subgrade soil - The drainability of the subgrade soil is a function of:

- Soil grain size
- Depth of the water table
- Soil plasticity and topography

Combining Base and Subgrade Drainage

PERFORMANCE EXC - Excellent G - Good F - Fair P - Poor VP - Very Poor		Base Drainabilities		
		A Acceptable	M Marginal	U Unacceptable
Subgrade Soil Durability	Good	EXC	G	F to P
	Fair	G	F	P to VP
	Poor	F to P	P to VP	VP

Summary

The following information is required for drainage analysis

- External or climatic factors Potential for moisture in pavement structure Potential for temperature interaction with moisture
- Internal or material properties Ability of granular layer to pass water to drains Ability of subgrade to assist drainage