Module 2-3

Nondestructive Data Collection and Interpretation

Objectives

Describe the nature of a pavement's response to load

List NDT devices and characteristics

List factors that influence deflection

Describe procedures for conducting NDT program

Describe effects of season on NDT Describe principles and procedures for in-situ materials characterization

Introduction

NDT - Valuable engineering tool in assessing uniformity and structural adequacy

Useful

- Identify subsections
- · Identify locations for sampling / testing
- Characterize material properties
- Rational basis for structural capacity
 assessment

Introduction

Productive - 200 to 400 measurements per day

Repeatable

Used by most states for project and some network evaluations.

Potential Results From NDT

Project variability Subgrade soil support Void location Joint load transfer Critical periods In-situ material properties Structural adequacy

Types of NDT Equipment

Static Vibratory Impulse Surface wave propagation

"Static" Load Devices

Benkelman beam

California Traveling Deflectometer

La Croix Deflectograph

Vibratory (steady state dynamic) Equipment

Dynaflect Road Rater (3 models)

Dynaflect

Road Rater

Pavement Factors

Distress

- Transverse location
- Surface discontinuities
- Subsurface variations
- Underlying voids
- Random variability

Climatic Factors

Moisture

Temperature

Frost penetration

Conducting NDT Surveys

Temperature measurements

- Hourly
- Multiple locations
- Air and pavement
- Correction to standard (e.g., 21° C)

Testing Locations / Frequency

30 to 150 m intervals Typically outer lane only Both directions - staggered Flexible - outer wheel path JPCP / JRCP - midslab, joint, corner CRCP - outer wheel path - between cracks and at cracks

Testing at Joints

Interpretation of NDT Data

Uniformity of project

- Design sections for rehabilitation
- Locations for sampling / testing
- Determining pavement layer moduli
 - Insitu characterization
 - "Backcalculation" process

Uniformity (Non-uniformity) of Project

Material	Range	Typical
PCC	0.10 - 0.20	0.15
НМА / АТВ	0.15 - 0.45	0.35
Cement Stab. Base	0.15 - 0.30	0.20
Granular Base / Subbase	0.30 - 0.40	0.35
Subgrade Soil	0.30 - 0.50	0.40

Material	Range (mPa)	Typical (mPa)
НМА	1,500 - 3,500	3,000
PCC	20,000 - 55,000	30,000
АТВ	500 - 3,000	1,000
СТВ	3,500 - 7,000	5,000
Lean concrete	7,000 - 20,000	10,000
Granular base	100 - 350	200
Granular soil	50 - 150	100
Fine-grained soil	20 - 50	30

	Trial Moduli (mPa)		Predicted Deflections (mm)					Avg. %				
Iterat	- E ₁	E2	E ₃	E4	Δ_1	Δ_2	\triangle_3	\triangle_4	Δ_{5}	\triangle_6	\triangle_7	Diff.
1	1724	276	138	690	.276	.201	.166	.132	.108	.075	.040	20.5
2	1724	276	207	345	.238	.167	.136	.105	.083	.055	.031	36.4
3	1724	207	103	276	.335	.257	.218	.177	.147	.104	.058	5.9
4	1793	224	107	297	.320	.245	.208	.169	.141	.100	.056	1.3
5	1862	224	107	297	.316	.243	.207	.169	.141	.100	.056	0.9
	Meas	sured	Defl.	(mm):	.309	.243	.208	.171	.140	.099	.054	

Rules of Thumb

E_{bottom} = is a function of the deflection beyond one meter
Effect of underlying "rigid" layers
Effect of more than one bound layer

Effect of "thin" layers

Backcalculation Programs

BISDEF	MODCOMP
ELSDEF	BOUSDEF
CHEVDEF	ELMOD
MODULUS	EVERCALC
COMDEF	ILLI-BACK
WESDEF	

Joint/Crack Load Transfer

$$LTE = \left(\frac{\Delta_{u}}{\Delta_{L}}\right) * 100$$

Summary

Background NDT equipment

Influential factors

Conducting field surveys

Interpretation of NDT data