

Q 8

Instructional Objectives

- Understand use of performance models
- Identify common modeling
- approaches
 Understand methods for evaluating
- reliability
- Describe requirements for updating models

	Types of Performance Models							
	Deterministic				Probabilistic			
	Primary Response	Structural	Functional	Damage	Survivor Curves	Transitio Mo	n Process dels	
	Deflection Stress Strain	Distress Pavement Condition	PSI Safety	 Load Equiv. 		Markov	Semi- Markov	
National Level				E	E	E	E	
State or District Level		E	E	E	E	E	E	
Project Level	E	E	E	E				

0

- Inclusion of all significant variables that affect performance
- Adequate functional form of the modelSatisfaction of the statistical criteria
- concerning the precision of the model
- Understanding of the principles behind each modeling approach

Data Requirements

- Requirements vary depending on the type of model being developed
- Inventory Information
- Monitoring Data

Model Limitations

- · Models must be used appropriately
- Limitations of models must be consideredBoundary conditions should be identified
- and satisfied

Mechanistic Models

- No purely mechanistic performance models have been developed
- Calculated stress and strain attributes from mechanistic models can be used as the input for an empirical prediction model

- as the dependent variable
 Use elements of both mechanistic models (fundamental principles of pavement behavior) and empirical models (results)
- from experience or experiments)

• $N = A * (1/e)^B$

Regression Analysis

- A technique used to determine the relationship between variables
- Often used in agencies with historical databases available

Development of Deterministic Performance Models

- Very common modeling techniques in pavement management
- Predict a single number based on its relationship with one or more variables
- Can be empirical or mechanistic-empirical correlations calibrated using regression
- Condition is modeled as a function of other variables

Q

Coefficient of Determination (R²)

- Provides an indication of how much of the total variation in the data is explained by the regression equation or performance curve
- Network Level normally < 0.9
- Project Level normally > 0.9

Other Tests

- Number of Data Points
- Hypothesis Test of Regression Constants

B Limitation of Statistical Evaluations Statistical analyses only evaluate reliability of model for data used in its development A model can be statistically valid but not representative of actual deterioration patterns of network if poor quality data are used

Q 8

Reliability of Performance Models

- Network Level
- Project Level

Relia	bility of	Perforn	nance	Models		
]	Regression 1	Parameter	Expectations			
PMS Analysis Level	R ²	RMSE	Sample Size	# of Independent Variables		
Network	Medium to Low	Medium to Low	Large Sample	>1		
Project	High	Low	Small Sample	1		

Update Requirements

- Performance models must be updated regularly to continue to reflect deterioration patterns
- Feedback loops should be established to link deterioration models with engineering practices.

IDOT Fomily Models							
System Surface District Total							
Interstate	Composite (2)	1-4 5-9	4				
	Concrete (2)	1-4	4				
Non- Interstate	Flexible (3)	1-4 5-9	3				
	Overlays (5)	1-4 5-9	9				
	Concrete (4)	(1-9)CRC 1-4 5-9	8				
SMART	Flexible & OL (4)	A 11	4				

