

Truck Weight Data Collection

- ϵ Permanent weigh stations
- € Portable static scales
- € Weigh-in-motion (WIM)

Components of a Monitoring System

- ϵ Truck volume by classification
- ϵ Volume growth rate for each truck class
- $_\varepsilon\,$ Truck factor for each truck class and growth rate
- Lane distribution for the truck traffic
- € Variation in average weight of each truck type
- € Percent of ESAL occurring each month

ESAL Flow Maps

- $_{\rm c}$ Development of a truck flow map or ESAL traffic load file for PMS
- $_{\epsilon}$ Florida and Washington data used

ESAL Flow Maps Calculation

- $_{\mbox{\scriptsize ε}}$ Determine number and distribution of AVC and WIM devices
- $_{\varepsilon}$ Adjust data from short duration AVC and WIM to estimate average annual conditions
- $_{\varepsilon}$ Appropriate length of short duration counts to meet required needs

Truck Flows and Loads

Variability in Truck Travel Patterns

- € Site Specific Variation
- ϵ Time of Day Variation
- € Day of Week Variation
- € Season of Year
- € Geographic Location
- € Group Mean Variation

Truck Flows and Loads

- $\ensuremath{\varepsilon}$ Site specific estimates of truck loads are better than system means estimates
- $_{\mbox{\scriptsize ϵ}}$ Number of data collection sites limited by cost and available workforce

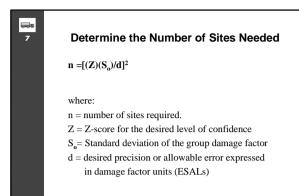
Design of a Continuous Data Collection Program for Vehicle Classification and Weight

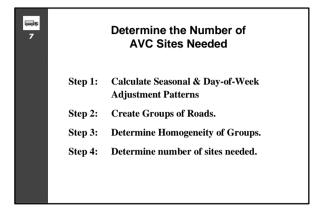
- $\ensuremath{\varepsilon}$ Determine number of continuously operating WIM sites needed
- ϵ Determine number of continuously operating AVC sites needed
- $_{\rm e}$ Develop truck load (ESAL) file for road network based on annual estimates using data measured on "similar" roads

To Determine the Number of WIM Sites Needed

- **Step 1:** Create Groups of Roads
- Step 2: Determine homogeneity of groupsStep 3: Determine number of sites needed

"similar" roads


Create Groups of Roads


- Divide network into reasonably homogeneous truck populations and patterns
- ϵ Subdivide to get lower variability

Determine Homogeneity of Groups

- $_{\ensuremath{\varepsilon}}$ Examine similar travel patterns
- € Plot the daily damage factors over time and compare plots for different sites within each group

Calculate Seasonal and Day of Week Adjustment Pattern

 $\ensuremath{\varepsilon}$ Calculate seasonal and day-of-week adjustment patterns for all sites

Create Groups of Roads

- $_{\rm c}$ Develop groups with relatively similar truck $\underline{\text{volume}}$ patterns
- $_{\epsilon}\,$ Road groups may be different from the damage factor groups developed for WIM site development

Determine Homogeneity of the Groups

 $_{\rm c}$ Determine acceptability of initial road groups by computing mean and standard deviation of seasonal factors

Determine the Number of Sites Required

 $\mathbf{n} = [(\mathbf{Z})(\mathbf{S}_o)/\mathbf{d}]^2$

where:

n = number of sites required

Z = Z-score for desired level of confidence

 S_o = Standard deviation of group damage factor

 $\label{eq:def} d = Allowable \mbox{ error expressed as fraction of} \\ mean \mbox{ seasonal factor for group}$

Develop ESAL File

 $_{\rm c}$ Develop ESAL file in same $\,$ processes and same file format as annual daily traffic volume file

Cost Estimate

- € Based on WSDOT Highway Network
- $_{\mbox{\tiny ε}}$ Following Guidelines which were first developed by a Data Rationalization Study

Cost Estimate

- $_{\rm c}$ 21 WIM sites needed for 10,000 kilometer Network across all functional classes
- $_{\rm c}$ Initial Cost approximately \$1,000,000 for installation of 21 WIM Sites
- $_{\rm c}$ Annual Operations cost about \$750,000 with staff of 12

Cost Estimate

- Installation costs based on 19 Piezo Cable systems and 3 Bending Plate Systems with two lanes monitored at each site
- Operational costs based on costs to calibrate sites, maintain sites and replace sites as they fail, plus occasional pavement repair to provide smooth approach to weight system

Cost Estimate

- ϵ Approximately 60 permanent AVC Sites also required to be placed on all functional class highways
- $_{\rm c}$ Installation and operational costs about same for AVCs as for WIMs; AVC cost less and are more durable but 3 times number required
- $_{\mbox{\tiny c}}$ AVCs already an integral part of monitoring program for AADT files

Summary

- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} Module focuses on how to obtain accurate traffic data \end{tabular}$
- Rough costs to develop and maintain WIM System to meet these guidelines
- ϵ Input data for use in PMS affect reliability of prediction models and pavement designs

Instructional Objectives

- $_{\varepsilon}$ Basic concepts of Equivalent Single Axle Loads (ESAL)
- $_{\mbox{\scriptsize ε}}$ Estimate of ESALs considering daily, monthly and seasonal truck flows
- $_{\mbox{\tiny ε}}$ Use in PMS and pavement design