
™. 6

Instructional Objectives

- Historic development of pavement condition indices
- The basic functions of condition indices in PMS
- Different types of condition indices
- Development of a pavement condition index

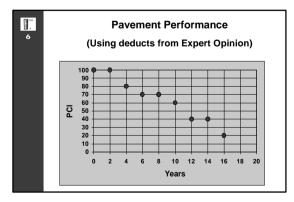
Pavement Condition Indices Development

Computed using a very simple deduct based formula:

- e PCI = PCI_{max} Deduct Value
- e **Example**
- 100 40 = 60

- $\ensuremath{\scriptscriptstyle \varepsilon}$ Transform pavement condition data into pavement condition indices
- $\ensuremath{\scriptscriptstyle \varepsilon}$ Deduct values developed for various levels of distress severity and extent
- Two basic approaches
- Expert opinionEngineering criteria

.


	Deduct Value Table From Expert Opinion					
Severity	Extent (%)					
	None	1 - 10	10 - 25	25 - 50	> 50	
Low	0	20	30	40	50	
Medium	0	35	40	60	75	
High	0	50	60	80	100	

Example: Pavement Distress Tren								
Severity	Extent (%)							
	None	1 - 10	10 - 25	25 - 50	> 50			
Low	r 2	r4	r ₆ r8					
Medium			r ₁₀	r ₁₂ r ₁₄				
High				r 16				

Pavement Distress Curve

- $_{\rm e}\,$ Plot condition index versus age
- Produces a pavement performance curve
- $\ensuremath{\scriptscriptstyle \varepsilon}$ Shape and trend of resulting curve is dependent on deduct value developed

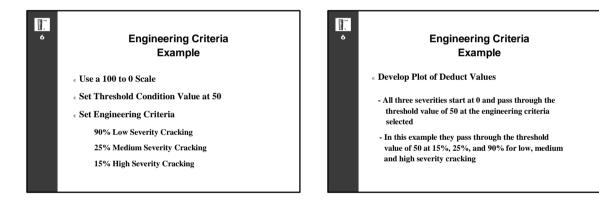
6

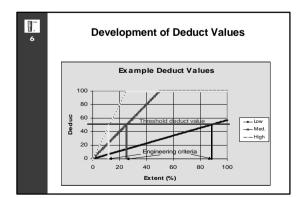
Engineering Criteria Approach: Index Scale

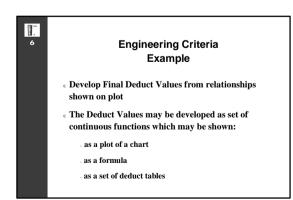
- Scale used for condition index
- $_{\varepsilon}$ Scale chosen to meet agency needs and perceptions
- $_{\rm e}$ Typical scales are 0-100, 0-10, 0-5

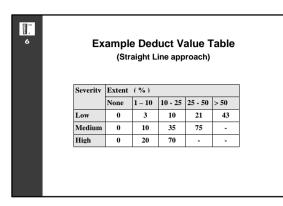
Engineering Criteria Approach: Threshold Value

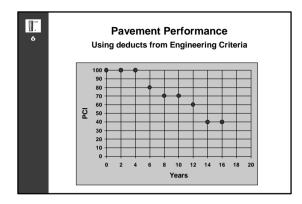
 $\ensuremath{\scriptscriptstyle \varepsilon}$ Index value representing unacceptable pavement condition

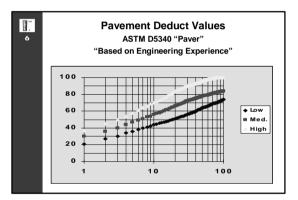

. .

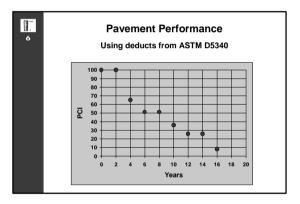

- $_{\rm e}\,$ Typically taken as middle of an index scale, such as 50 (0-100 scale) or 2.5 (0-5 scale)
- ϵ May be set to represent a range such as 40 to 60 (0-100 scale) or 2 to 3 (0-5 scale)

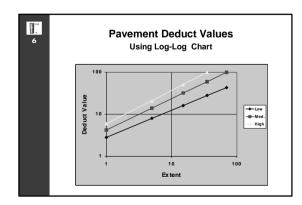


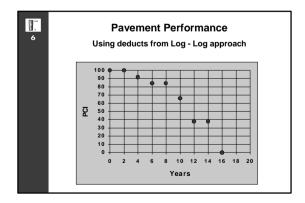

Engineering Criteria Approach: Engineering Criteria


- ϵ Pavement distress level (severity, extent), considered unacceptable
- ϵ Amount of distress for each severity level where action should be taken to correct distress
- ${\ensuremath{\,\,\overline{}}}$ May be numerically different for various types of distress









.

Distress Index Development Basic Criteria

- « Scaled deduct values so resulting condition index threshold value occurs near middle of scale
- ε Transition of deduct values should produce reasonable smooth performance curve matching trends of distress observed in field

. . **Current Practices** « 1994 - NCHRP Synthesis 203 survey e 50 states / 9 provinces $\ensuremath{\scriptscriptstyle \varepsilon}$ Roughness (IRI) use increased sharply ${\ensuremath{\scriptstyle \varepsilon}}$ Structural capacity - vary widely $_{\rm e}$ Friction / skid testing - not common at network level

. .

Current Practices

- e Distress info most variation - field procedure - distress definitions
- ε Little opportunity to exchange information
- $_{\rm e}$ Approximately. 80% of agencies use
 - distress index
 - serviceability index/rating
 - priority rating
- $_{\varepsilon}$ No evident trends in development
- $_{\rm e}$ 67% use composite indices (roughness)

. .

- Instructional Objectives
- Historic development of pavement condition indices
- $_{\rm e}~$ The basic functions of condition indices in PMS
- $_{\varepsilon}~$ Different types of condition indices
- $_{\rm e}~$ Development of a pavement condition index