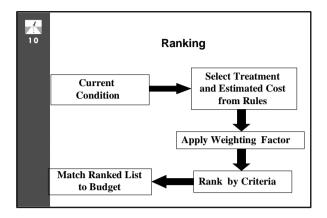

10


Instructional Objectives

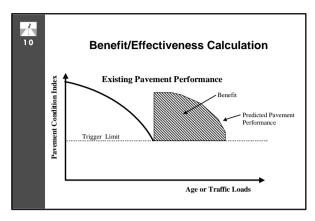
- ϵ Describe the objectives of a multi-year prioritization analysis.
- ϵ Understand the differences between other multi-year analysis techniques.
- $\varepsilon~$ Describe the components of a multi-year prioritization analysis.
- Understand the use of a multi-year prioritization analysis as part of an agency's project selection process.

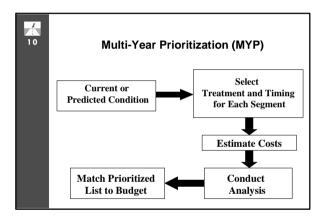
4				
10		Ranking	Example	
		Condition		Cost
	Section 67A	Level 67	<u>Treatment</u> Minor	<u>(mil)</u> 1
	67B	82	PM	0.5
	67C	52	Major	3
	14A	71	Minor	2
	14B	74	Minor	1.5
	Univ1	85	PM	0.5

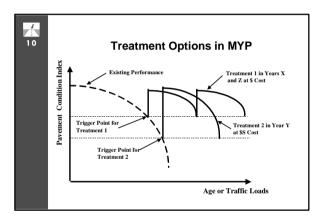
10		Results	for \$4 Mi	illion Buc	lget	
	Section ID 67C	Ranking 1	Condition Level 52	Treatment Major	Cost (\$millions) 3	
1	67A	2	67	Minor	1	Ť
	14A	3	71	Minor	2	_
	14B	4	74	Minor	1.5	
	67B	5	82	Prev. Maint.	0.5	
	Univ1	6	85	Prev. Maint.	0.5	

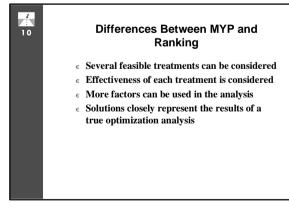
•		le With	Treign	ining i c	
Section ID	Ranking	Condition	Traffic	Weight	Cos
14 A	1	71	0.5	36	2
14B	2	74	0.5	37	1.5
67C	3	52	1	52	3
67A	4	67	1	67	1
Univ1	5	85	1	85	0.5
67B	6	82	1.5	123	0.5

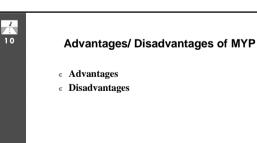


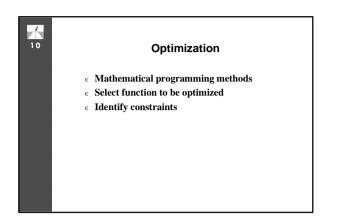

- $\ensuremath{\epsilon}$ Rate of deterioration is not considered
- $\varepsilon \;\;$ Economic analysis for alternative strategies not considered



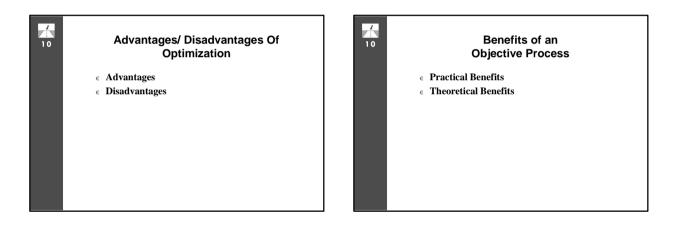

Ranking = Single-Year Prioritization

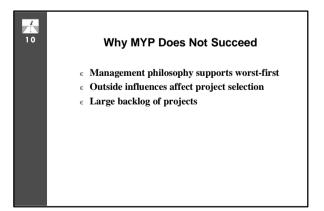

- € **Definition**
- € Uses€ Limitations

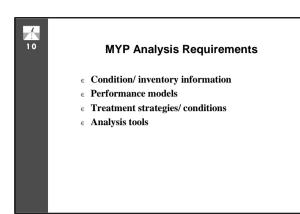






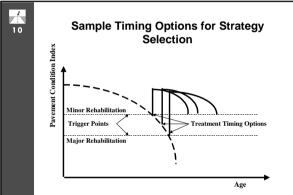


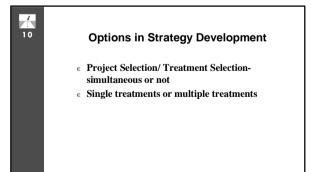




Factors to Ensure the Success of MYP

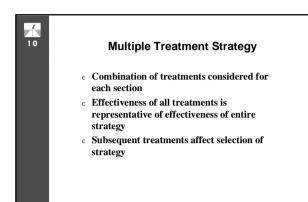
- $\varepsilon~$ Management must support and understand philosophy
- Recommendations represent normal conditions and are not guaranteed
- $\varepsilon~$ Different strategies match different goals
- ϵ It should be considered a tool

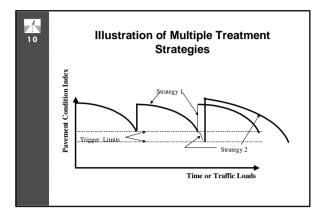


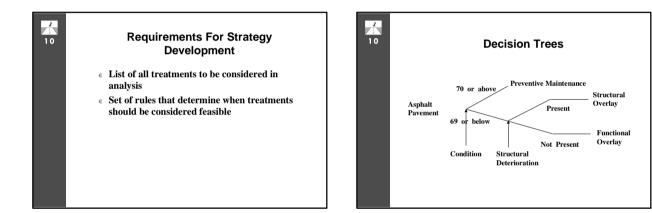


Treatment Strategies

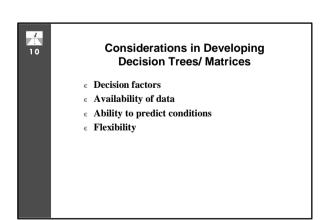
- $\varepsilon~$ One or more maintenance or rehabilitation techniques
- € Designed to improve or maintain conditions
- € Tailored to consider constraints
- ϵ Evaluated in terms of cost-effectiveness

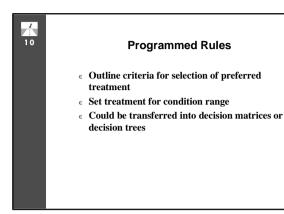




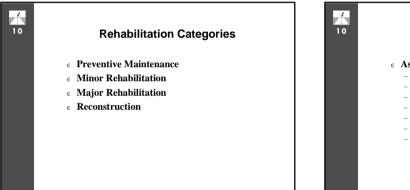


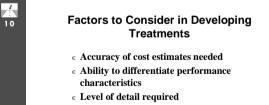
Single Treatment Strategy


- $\in \ \ \text{Most common approach}$
- ϵ Several feasible alternatives may be identified for each section
- $\varepsilon~$ Each treatment considered independently



10		Decisio	on Matrix	ſ
	Treatment		Condition	Structural
	Туре	Surface Type	Level	Deterioration
	Preventive			
	Maintenance	Asphalt Concrete	70-100	N/A
	Functional			
	Overlay	Asphalt Concrete	0-69	Not Present
	Structural			
	Overlay	Asphalt Concrete	0-69	Present

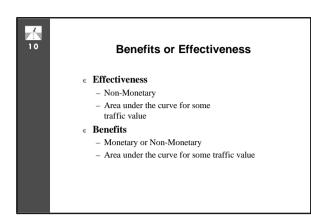


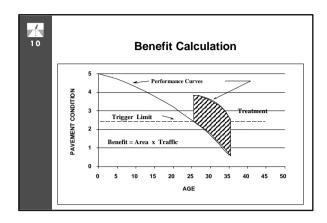

10

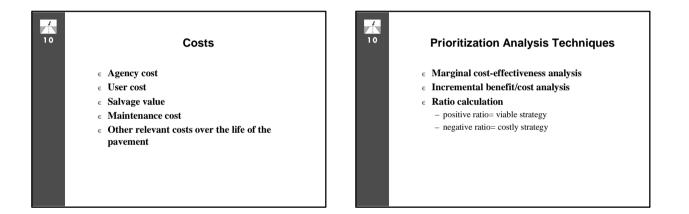
Types of Treatments Considered

- Rehabilitation category
- $\in \ \, \textbf{Specific treatment}$

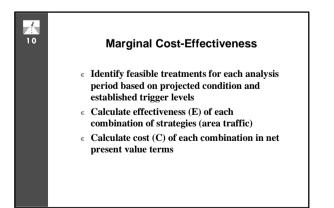
Specific Treatments € Concrete € Asphalt - Slab Grinding - Routine Maintenance - Surface Seal Coats Full- and Partial-Depth Repairs – Crack and Seat - Milling and Inlays - Thin Overlay Thin-Bonded Overlay Thick OverlayMill and Overlay - Unbonded Overlay - Slab Replacement - Reconstruction - Reconstruction

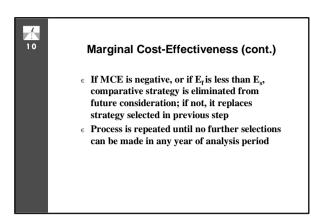


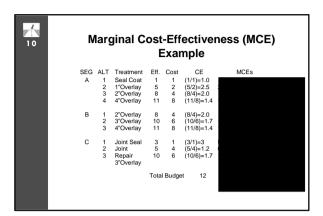

€ Need for selection criteria

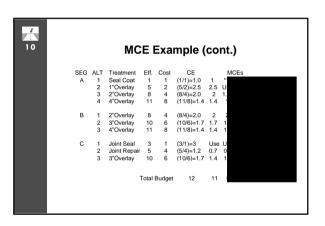

10

Prioritization Analysis Components

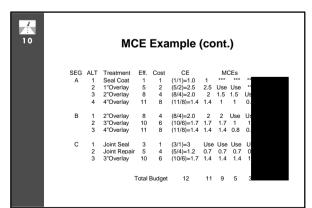

- \in Benefit or effectiveness
- € Life cycle costs
- € Benefit/cost ratio or effectiveness ratio

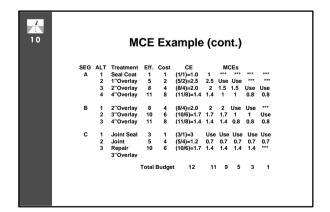

/ 10

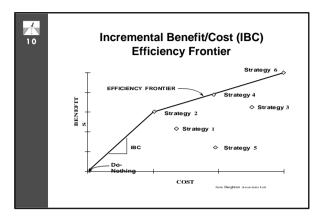


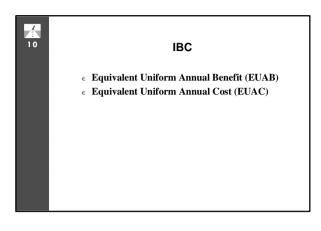

Marginal Cost-Effectiveness (cont.)

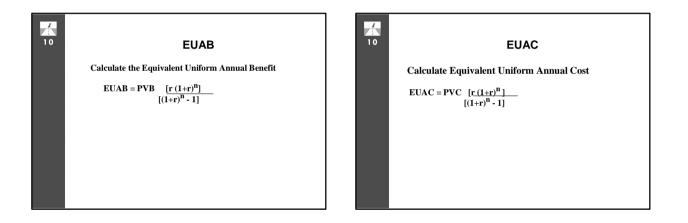
- $\varepsilon~$ Calculate cost-effectiveness (CE) of each combination as ratio of E/C, where highest value is best
- $\varepsilon~$ Select treatment and timing for each section with best CE
- $\varepsilon~$ Calculate marginal cost-effectiveness (MCE) of all other strategies as follows:

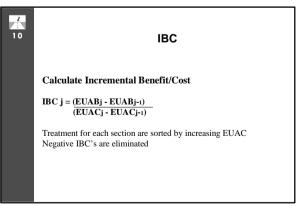

 $MCE = (E_r - E_s)/(C_r - C_s)$

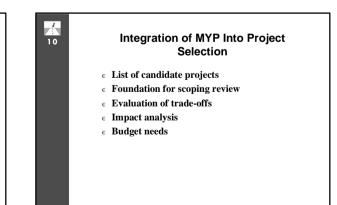


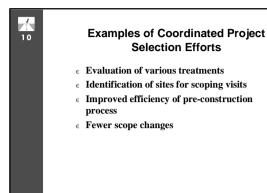


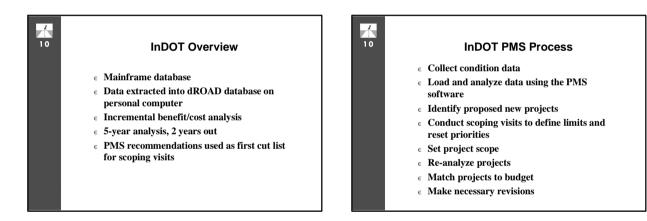


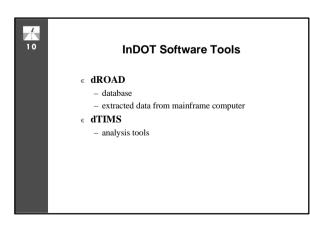

10			M	CE	Exa	mple	(cc	ont	.)	
	SEG	ALT	Treatment	Eff.	Cost	CE		м	Es	_
	A	1	Seal Coat	1	1	(1/1)=1.0	1	***	*	
		2	1"Overlay	5	2	(5/2)=2.5	2.5	Use	Us	
		3	2"Overlay				2			
		4	4"Overlay		8	(11/8)=1.4		1	1	
	в	1	2"Overlay			(8/4)=2.0	2	2		
		2	3"Overlay		6	(10/6)=1.7	1.7	1.7	1	
		3	4"Overlay	11	8	(11/8)=1.4	1.4	1.4	0.	
	с	1	Joint Seal		1	(3/1)=3	Use	Use	U	
		2	Joint	5	4	(5/4)=1.2	0.7			
		3	Repair 3"Overlay	10	6	(10/6)=1.7	1.4	1.4	1	
				Total	Budge	t 12	11	9		
										_

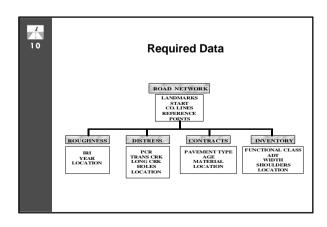


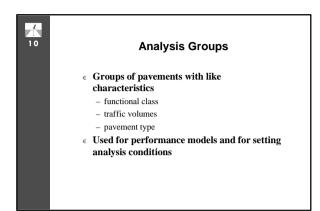


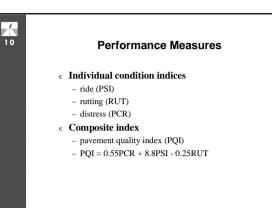


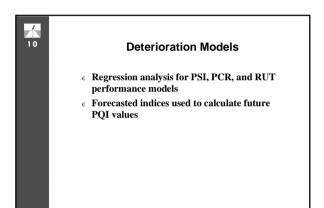


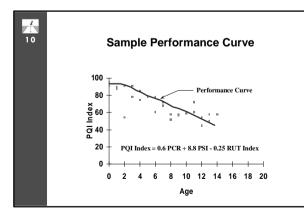


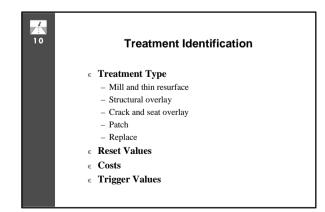

10


Case Study -Indiana DOT (InDOT)

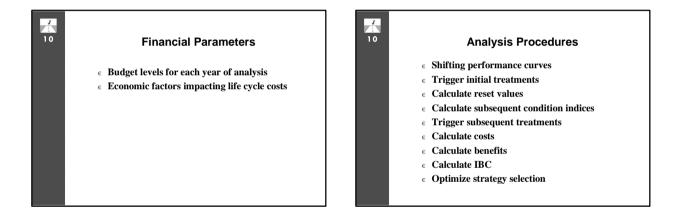

- \in MYP for interstate system
- $\ensuremath{\epsilon}$ One complete programming cycle developed using new software

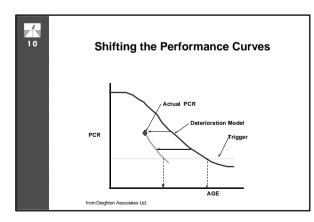


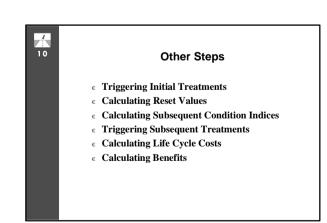


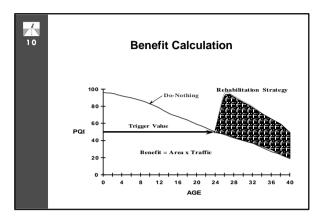


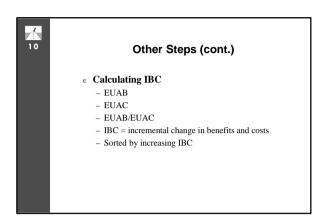
4 10	Performa	nce N	lodels	5	
	Functional Class/Surface Type	PSI	PCR	RUT	PQI
	Interstate Composite	E	E	E	E
	Interstate Flexible	E	E	E	i
	Interstate Crack and Seat	E	E	E	i
	Interstate Jointed Concrete	E	E		i
	Interstate Continuously Reinforced Concrete	E	E		i
	State Route Composite	i	i	i	i
	State Route Asphalt	i	i	i	i
	State Route Composite - Low Traffic	i	i	i	i
	State Route Asphalt - Low Traffic	i	i	i	i
	Other Jointed Concrete	i	i		i
	Other Continuously Reinforced Concrete	i	i		i




10	Т
	Inters
	Treatmen
	Mill and Resurface
	Structural Overlay Run
	Structural Overlay Urb
	Crack and Seat Rural
	Crack and Seat Urban
	Patch


reatment Costs


Treatment Type	Cost per sq vd			
Mill and Resurface	\$6.00			
Structural Overlay Rural	\$50.00			
Structural Overlay Urban	\$60.00			
Crack and Seat Rural	\$50.00			
Crack and Seat Urban	\$60.00			
Patch	\$5.00			
Replace Rural	\$66.00			
Replace Urban	\$77.00			


0		Tre	eatme	ent Tri	igger	Valu	es
	PVMT			COMP	OSITE		
	PSI	GOOD 5-3.5		FA	IR	POOR	
				3.5-2.8		< 2.8	
	RUT	GOOD	BAD	GOOD	BAD	GOOD	BAD
		< 0.45	>0.45	< 0.45	>0.45	< 0.45	>0.45
	PCR						
	100-90	NO	R/S	NO	R/S	R/S	4R
	90-80	NO	R/S	NO	R/S	R/S	4R
	80-70	NO	R/S	R/S	4R	4R	4R
	70-60	4R	4R	4R	4R	4R	4R
	60-50	4R	4R	4R	4R	RPL	RPL
	<50	4R	4R	RPL	RPL	RPL	RPL

