8 FITTING A STRAIGHT LINE BY LEAST SQUARES
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' Figure 1.3° A point outsidesthe data space.

depends on variables X, X,,..., X,. We determine a regression equation
from data which “cover” certain areas of the “ X-space.” Suppose the point
Xo = X10, X29,--, Xyo) lies outside the regions covered by the original
data. While we can mathematically obtain a predicted value Y(X,) for-the
response at the point X, we must realize that reliance on such a prediction
is extremely dangerous and becomes more dangerous the further X, lies
from the original regions, unless some additional knowledge is available
that the regression equation is valid in a wider region of the X-space. Note
that it is sometimes difficult to realize at first that a suggested point lies
outside a region in a multi-dimensional space. To take a simple example,
consider the region.defined by the ellipse in Figure 1.3, within which all the
data points (X, X,) lie; the corresponding Y values, plotted vertically up
from the page, are not shown. We see that there are points in the region for
which1 < X| < 9andforwhich24 < X, < 6.3, Although both coordinates
of P lie within these ranges, P itself lies outside the region. When more
dimensions are involved, misunderstandings of this sort easily arise.)

1.2. Linear Regression: Fitting a Straight Line

We have mentioned that in many situations a straight-line relationship

can be valuable in summarizing the observed dependence of one variable
on another. We now show how the equation of such a straight line can be
obtained by the method-of least squares when data are available. Consider,
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1.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE 9

in the printout on page 616, the twenty-five observations of variable 1 (pounds
of steam used per month) and variable 8 (average atmospheric tempera-
ture in degrees Fahrenheit). The correspondmg pairs of observations are
. given in Table 1.1 and are plotted in Figure 1.4.

Table 1.1  Twenty-five Observations
of Variables 1.and 8

Variable Number

Observation -

Number iY) 8(X)
1 1098 . 353
2 1113 29.7
3 12.51 30.8
4 8.40 588
5 927 614
6 8.73 713
7 6.36 74.4
8 -8.50 76.7
9 7.82 70.7
10 9.14 57.5
11 8.24 46.4
12 1219 289
13 11.88 28.1
14 T 9.57 39.1
15 10.94 468
16 9.58 - 485
17 10.09 59.3
18 8.11 70.0
19 . 6.83 70.0
20. 8.88 - 745
21 7.68 72.1.
22 8.47 58.1
23 8.86 - 446
24 10.36 334
25 11.08 28.6

Let us tentatively assume that the regression line of variable 1 which wé
shall denote by Y, on variable 8(X) has the form 8, + B.X. Then we can
write the nnear first-order model

Y =B + X + & a2y
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parameter that goes with X? = XX. The natural extension of this sort of
notation appears, for example, in Sections 5.1 and 7.7.)

Now B, B,, and ¢ are unknown in Eq. (1.2.1), and in fact ¢ would be
- difficult to discover since it changes for each observation Y. However, f,
and B, remain fixed and, aithough we cannot find them exactly without
examining all possible occurrences of Y and X, we can use the information
provided by the twenty-five observations in Table 1.1 to give us estimates
by and b, of B, and f,; thus we can write '

? = b, + b, X, ' (1.2.2)

where ¥, read “Y hat,” denotes the predicted value of Y for a given X, when
b, and b, are determined. Equation (1.2.2) could then be used as a predictive
equation; substitution for a value of X would provide a prediction of the
true mean value of Y for that X. '

The use of small roman letters b, and b, to denote estimates of the param-
eters given by Greek letters f, and f§, is standard. However, the notation
B and B, for the estimates is also frequently seen. We use the latter type of
notation .ourselves in Chapter 10.

Our estimation procedure will be that of least squares. There has been a
dispute about who first discovered the method of least squares. It appears that
it was discovered independently by Carl Friedrich Gauss (1777-1855) and
Adrien Marie Legendre (1752-1833), that Gauss started using it before 1803
(he claimed in about 1795, but there is no corroboration of this earlier date),
and that the first account was published by Legendre in 1805. When Gauss
wrote in 1809 that he had used the method earlier then the date of Legendre’s
publication, controversy concerning the priority began. The facts are care-
fully sifted and discussed by R. L. Plackett in “Studies in the history of
probability and statistics. XXIX. The discovery of the method of least
squares,” Biometrika, 59, 1972, 239-251, a paper we enthusiastically recom-
mend. Also recommended are accounts by C. Eisenhart, “The meaning of
‘least’ in least squares,” Journal of the Washington Academy of Sciences, 54,
1964,24-33(reprinted in Precision Measurement and Calibration,ed. H.H.Ku,
National Bureau of Standards Special Publication 300, Vol. I, 1969) and
“Gauss, Carl Friedrich,” International Encyclopedia of the Social Sciences,
Vol. 6, 1968, pp. 74-81, Macmillan Co., Free Press Div., New York; and a
related account by S. M. Stigler, “Gergonne’s 1815 paper on the design and
analysis of polynomial regression experiments,” Historia Mathematica, 1,
1974, 431-447 (see p. 433).

Under certain assumptions to be discussed in Chapter 2, the method of
least squares has certain properties. For the moment we state it as our chosen
method of estimating the parameters without justification. Suppose we have
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B, and then with respect to 8, and setting the results equal to zero. Now

oS z
ﬁr""z.z (Yi—BO_BlXi) .
5 0 =1 (1.2.5)
S n
EB: = -2 EZJQ(Y BO Bl
so that the estimates b, and b, are given by
Z(Yx —bo—b,X) =0
=t (1.2.6)

L XY = bo — b1X) =0

where we substitute (bg, b,) for (84, §;), when we equate Eg. (1.2.5) to zero.
From Eg. (1.2.6) we have

ZYl_nbo_bIZXi::O

i=1 i=1

. . B 127

ZXiY;'_bOZ‘Xi—bl ZXiz=0

i=1 i=1 i=1 :

or
b0n+b ZX ZK
A (1.2.8)
boin+b1 ZXiz = Z.XEY:
i=1 i=1 - i=1

These equations are called the normal equations.
The solution of Eq. (1.2.8) for b,, the slope of the fitted straight line, is

p X%~ [Q XY Wl/n _ 3 (X~ XXY — )
SRS 35 035 S R ¢ O <.

where all summations are from i = 1 to n.and the two expressions for b, are
just slightly different forms of the same quantity. For, defining

=X+ X, -+ X)n =Y Xy,
Y=+ YL+ +Y)n=3) Y/n,

(1.2.9)

we have that

XX -X)(Y -7 =



1.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE 15

Substituting Eq. (1.2.10) into Eq. (1.2.2) gives the estimated regression
equation

t=7 + by (X ~ X), (1.2.11)
where b, is given by Eq. (1.2.9).

Notethatifweset X = Xin(1.2.11),then ¥ = Y. This means that the point
(X, Y) lies on the fitted line. Let us now perform these calculations on the
‘data given as an example in Table 1.1. We find the following:

n=25
Y Y, =1098 + 1113 + --- + 11.08 = 235.60
Y = 235.60/25 = 9.424 '
Y X, =353 +297 + - + 286 = 1315
X = 131525 = 5260
Y X, Y, = (10.98)(35.3) + (11.13)(29. 7) + - + (11.08)(28.6)
= 11821.4320
Y X2 =(353)% + (29.7)% + --- + (28.6)% = 76323.42
Y XY — (T X)X Yo/n |
b= ZX2 Q. X)*n _
11821.4320 — (1315)(235.60)/25  —571.1280
7632342 — (1315725 715442

b, = ~0.079829. -

The fitted equation is thus

Y=Y+b(X-X)

Y '=9.4240 - 0079829(X — 52.60)
= 13. 623005 — 0.079829X.

The fitted regresswn llne is plotted in Figure 1.4. We can tabulate for each
of the twenty-five values X, at which a .Y; observation is available, the fitted
value ¥; and the residual Y; — ¥; as in Table 1:2. The residuals are given to
the same number of places as the original data.

Note that since ¥, = Y + b,(X; — X),
i~ Yi=-7) -b(X,-X),

Y- %)= Z(Y~Y)—b Z(X % =o
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or
y=P80 +Bix+e¢

say, where y = Y, By =Bo+ B X — Y x=X—X, then the least-
squares estimates of Bo "and. B, are given as follows

Z(X—X)(y.—Y) Y& - XN, -7)
TE-®T T LX-X)7

identical to Eq. (1.2.9),- while

by =9 —b;Xx=0, sinceX=7y=0,

whatever the value of b,. Because this always happens, we can write the
centered model as S :

Y—,7=‘B(X—')7)+s

omlttmg the B, (intercept) term entirely. We have lost one parameter but

there is a corresponding loss in the data since the quantities ¥; — Y, i =

1,2,...,n represent only (n — 1) separate pieces of information due to the
fact that their sum is zero, whereas Y}, Yy,..., ¥, represent n separate pieces
of information. Effectively the “lost” pieces of information has been used
to enable the proper adjustmeiits to be made to the model so that the inter-
cept term can be removed. ' '

1.3. The Precxs:on of the Estlmated Regressmn

We now tackle the questlon of what measure of precision can be attached
to our estimate of the regression line. Consider the following identity: -

-4 =Y-Y-—(F- 7). S (13.)

What this means geometrically for the fitted straight line is illustrated in
Figure 1.6. The residual ¢; = ¥; — ¥ is the difference between two quantities:
(i) the deviation of the observed Y, from the overall mean Y, and (ji) the devia-
tion of the fitted ¥; from the overall mean Y. Note that the average of the ¥,
namely

> Y/n = Y. (bo + b1 X)/n
= (nby + bnX)/n
= by + b, X
=Y



1.3. THE PRECISION OF THE ESTIMATED REGRESSION 19

- We now return to a discussion of Eq. (1.3.2). The quantity (Y; — Y) is the

deviation of the ith observation from the overall mean and so the left-hand '
side of Zq. (1.3.2) is the sum of squares of deviations of the observations

from the mean; this is shortened to SS about the mean, and is also the corrected

sum of squares of the Y’s. Since Y; — Y is the deviation of the predicted value

of the ith observation from the mean, and Y; — Y is the deviation of the ith

observation from its predicted or fitted value (the ith residual), we can express

Eq. (1.3.2) in words as follows:

" Sum of squares _ Sum of squares Sum of squares
~ about the mean due to regression  about regression

This shows that, of the varlatlon in the Y’s about their mean, some of the
variation can be ascribed to the regression line and some, Z(Y} - ‘Y,)2,v
to the fact that the actual observations do not all lie on the regression line
—if they all did, the sum of squares about the regression would be zero!
From this procedure we.can see that a way of assessing how useful the
regression line will be as a predictor is to see how much of the SS about the
.mean has fallen into the SS due to regression and how much into the SS
about regression. We shall be pleased if the SS due to regression is much
greater than the SS about regression, or what amounts to the same thing
if the ratio R? = (SS due to regression){SS about mean) is not too far
from unity. ~ T — T

Any sum of squares has assoc1ated with it a number called its degrees of
freedom. This number indicates how many independent pieces of information
involving the n-independent numbers Y;, Y;,..., Y, are needed to compile
the sum of squares. For example, the SS about the mean needs.(n — 1)
1ndependent pieces (for of the numbers ¥; — Y, Y, — Y,..., Y — Y, only
(n — 1) are independent since all n numbers sum to zero by deﬁmtlon of the
mean). We can compute the SS due to regression from a single function of
Y, Ys,..., Y,, namely b, [since Y (¥, — ¥)? = b,2 Y (X; — X)?], and so
this sum of squares has one degree of freedom. By subtraction, the SS about
regression, which we shall in future call the residual sum of squares (it is, .
as we can see, the sum of squares of the residuals Y, — Y, in fact) has (n — 2)
degrees of freedom (df). This reflects the fact that the present residuals are )
from a fitted straight line model which required estimation of two parameters.
In general, the residual sum of squares is based on (number of observations—
number of parameters estimated) degrees of freedom. Thus corresponding
to Eq. (1.3.2), we can show the split of degrees of freedom as

m—1=1+@~2). : (1.3.4)

From Eqgs. (1.3.2) and (1.3.4) we cah construct an analysis of variance table
in the form of Table 1.3. The “Mean Square ™ column is obtained by dividing
each sum of squares entry by its corresponding degrees of freedom.
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Table 1.4  Analysis of Variance (ANOVA) Table Incorporating SS(b,)

Source df SS - MS
Due to b, by 1 SS(b, |by) = _;(Yf; - 1) MSg.,
Residual n—2 i(Y,- - 7y s?
i=1
Total, corrected n—1 | i(y.- -7y
=1
(Cg;;etc:(;:)factor ) SS(by) = (:Zl Y,-)Z/n T
Total n 3 ¥

We leave it to the reader to verify the algebraic equivalence of these formulas,
which follow from algebra previously given on pp. 14 and [8. Of these forms,
Eq. (1.3.5) is the easiest to use on a pocket calculator becduse the two pieces
have already been calculated to fit the straight line. However, rounding off
of b, can cause inaccuracies, so Eq. (1.3.7) with division performed last is the
formula we recommend for calculator evaluation.

Note that the total corrected SS can be written and evaluated as

Sy =Y (% - Y);=Z Yo W (139)
I 1 I CHE (13.10)

The notation SS(b,|b,) is read “the sum of squares for b, after allowance
has been made for b,.” The purpose of this notation is explained in Sections
2.2and 2.7. .

The mean square about regression, s* will provide an estimate based. on
n — 2 degrees of freedom of the variance about the regression, a quantity
we shall call 67.x. If the regression equation were estimated from an in-
definitely large-number of observations, the variance about the regression
would represent a measure of the error with which any observed value of Y
could be predicted from a given value of X using the determined equation
(see note 1 of Secfion 1.4).
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2. g and ¢; are uncorrelated, i # j, so that
cov(g;, &) =0
Thus
E(Y)=Bo+ B1X:;, V(¥)=0*

and Y, and Y,, i # j, are uncorrelated. A further assumption, which 1s not
1mmed1ately necessary and will be recalled when used, is that .

3. & is a normally distributed random variable, with mean zero and
variance 62 by (1), that is,

& ~ N(O, o2).

‘Under this additional assumption, &, € are not only uncorrelated but
necessarily mdependent
The situation is illustrated in Figure 1.7.

Notes

1. ¢? may or may not be equal to ¢%., the variance about the regression
mentioned earlier. If the postulated model is the true model, then ¢? =
0}.x. If the postulated model is not the true maedel, then 6% < o}.x. It follows
that s2, the residual mean square which estimates ¢7., in any case, is an
estimate of o2 if the model is correct but not otherwise. If 63.4 > 02 we
shall say that the postulated model is incorrect or suffers from Zack of fit.
Ways of deciding this will be discussed later.

N@By*+ B, X, 02)

Figure 1.7 Each response observation is assumed to come from a normal distribution centered
verticalily at the level implied by the assumed model. The variance of each normal distribution
is assumed to be the same, ¢2.



