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sample surveys

21.1—Iniroduction. At the beginning of this book it is pointed out that
one of the principal applications of statistical methods is to sample surveys, in
which information about a specific population is obtained by selecting and
measuring a sample of the members of the population. Three examples were
described briefly: the nationwide sample from which the Census Bureau
publishes monthly estimates of the number of employed and unemployed
members of the labor force; a sample of waybills taken by the Chesapeake &
Ohio Railroad in appraising whether sampling could be used to estimate @hc
money due the railroad when the Chesapeake & Ohio is used lor only a portion
of the freight trip; and a sample of 100 farmers in Boone County, lowa, taken to
estimate the proportion of farmers in the county who had sprayed their

" cornfields to control the European corn borer.

Statistical bureaus in countries in Western Europe and in this country
began to try sampling as a means of saving time and money toward lhe. cnq of
the nineteenth century. Acceptance of sampling took some time, but applications
gradually spread as sampling techniques were developed and bcttgr undcrsloot.i.
Nowadays, most published data except for decennial population counts 1s
collected {rom samples. .

Two simple methods for drawing a sample are introduced in chapter 1. One
method is to leave the selection entirely to chance. The members of the
population are first listed and numbered. If the members of the sample are to be
selected one at a time, use of a table of random digits guarantecs that at cach‘
draw any member of the population not alrcady drawn has an cquu.l chmllcc of
being selected for the sample. The method is called random sampling without
replacement, ot simple random sampling. ) . .

Simple random sampling is intuitively fair and free from distortion—every
member of the population is equally likely to appear in the sample. Its weakness
is that it does not use any relevant information or judgment that we ha.v; about
the nature of the population—such as that people in one part of a city are
wealthier than those in another or that farmers in the north of the county may be
more likely to spray than those in the south. One method of using §gch
knowledge is stratified random sampling. From this kr}owlcdgc we try to divide
the population into subpopulations or strata that are internally more homogc-\
neous. Then we draw a sample separately from each stratum. The appeal of
early applications of stratification was that it would make the sgmple more
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representative ol the population. By selecung the same proporion ol the
members of each stratum, in the method known as proportional stratification,
we guarantee that the sample has the correct population proportion of rich and
poor members instead of jcaving this matter to chance, as simple random
sampling does. But Neyman (-7) showed in 1934 that sometimes the deliberate
selection of different proportions in different strata can give more accurate
estimates than proportional stratification without introducing bias. As noted in
section 1.6, this was the method used in the sample of waybills.

This chapter introduces some of the principal methods used for selecting a
sample and estimating population characteristics from the sample data. We
begin with examples of simple and stratified random sampling.

21.2—An example of simple random sampling. The population consists of
N = 6 members, denoted by the letters a to f. The six values of the quantity being
measured are as follows: a, 1; b, 2; ¢, 4; d, 6; e, 7, f, 16. The total for this
population is 36. A sample ol three members is to be drawn to estimate this
total.

How good an estimate of the population total do we obtain by simple
random sampling? We are nol quitc ready to answer this question. Although we
know how the sample is to be drawn, we have not yet discussed how the
population total is to be estimated from the results of the sample. Since the
sample contains three members and the population contains six members, the
simplest procedure is to multiply the sample total by 2, and this procedure will
be adopted. Any sampling plan contains two parts—a rule for drawing the
sample and a rule for making the estimates from the results of the sample.

We can now write down all possible samples of size 3, make the estimate
from cach sample, and sce how close these estimates lic to the true value of 36.
There are 20 different samples. Their results appear in table 21.2.1, where the
successive columns show the composition of the sample, the sample total, the

TABLE 21.2.1
RESULTS FOR ALL POSSIBLE SAMPLE RANDOM SAMPLES OF SiZE THREE

Estimate of Estimale of

Sample  Population Error of Sample  Population Error of

Sample Total Total Estimate | Sample Total Total Estimate

abc 7 14 -22 bed 12 24 -2 -
abd 9 18 —18 bee 13 26 -10
abe 10 20 -16 bef 22 44 + 8
abf - 19 38 + 2, bde 15 30 - 6
acd 11 22 —14 bdf 24 48 S 412
ace 12 24 - 12 bef 25 50 +14
acf 21 42 + 6 cde 17 34 -2
ade 14 28 -8 cdf 26 52 +16
adf 23 46 +10 cef 27 54 +18
aef 24 48 +12 def 26 58 +22
Average 18 36 \]
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estimated population total, and the error of estimate (estimate minus true
value).

Sor_ne samples, e.g., abf and cde, do very well, while others like abe give
poor estimates. Since we do not know in any individual instance whether we will
be lucky or unlucky in the choice of a sample, we appraise any sampling plan by
looking at its average performance.

The average of the errors of estimate (taking account of their signs) is
callpq the bias of the estimate (or, more generally, of the sampling plan). A
positive bias implies that the sampling plan gives estimates that are on the whole
tqo high; a negative bias, too low. From table 21.2.1 it is evident that this plan
gives unbiased estimates, since the average of the 20 estimates is exactly 36 and
consequenltly the errors of estimate add to 0. With simple random sampling this
result holds for any population and any size of sample. Unbiased estimates are 2
desirable feature of a sampling plan, but a plan that gives a small bias is not
ruled out of consideration it has other attractive features.

As a measure of the accuracy of the sampling plan we use the mean square
error (MSE) of the estimates taken about the true population value.

MSE = Z(error of estimate)®/20 = 3504/20 = 175.2

The divisor 20 is used instead of 19, because the errors are measured from the
true population value. To sum up, this plan gives an estimate of the population
total that is unbiased and has a standard error 175.2 ~ 13.2. This standard
error amounts to 37% of the true population total; evidently the plan is not very
accurate for this population.

2].3—An example of stratified random sampling. Suppose that before
planning the sz}mplc we expect that f will give a much higher value than any
other member in the population. How can we use this information? Clearly the

TABLE 21.3.1
RESULTS FOR ALL POSSIBLE STRATIFIED RANDOM SAMPLES WITH THE UNEQUAL SAMPLING
FRACTIONS DESCRIBED IN TEXT

Sample Total in Estimate Error of
Sample Stratum I, T, 16 + 2.5T, Estimate
- —

abf 3 23.5 —12.5
acf s 285 - 75
adf 7 33.5 - 25
aef 8 36.0 0.0
bef 6 31.0 - 50
bdf 8 36.0 0.0
bef 9 38.5 4+ 2.5
cdf 10 41.0 + 5.0
cef I 43.5 + 7.5
def 13 48.5 +12.5
Average 360 0.0

-
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estimate from the sample will depend to a considerable extent on whether f falls
in the sample. This statement can be verified {rom table 21.2.1; every sample
containing f gives an overestimate and every sample without f'gives an underesti-
mate.

The best plan is to be sure that fappears in every sample. We can do this by
dividing the population into two parts or strata. Stratum [, which consists of f
alone, is completely measured. In stratum [, containing a, b, ¢, d, and e, we take
a simple random sample of size 2 to keep the total sample size equal to 3.

Some forethought is needed in deciding how to estimate the population
total. To use twice the sample total, as was done previously, gives too much
weight to fand always produces an overestimate of the true total. We can handle
this problem by treating the two strata separately. For stratum I we know the
correct total, which is 16, since we always measure f. For stratum 11, where 2
members are measured out of S, the natural procedure is to multiply the sample
total in that stratum by 5/2 or 2.5. Hence the appropriate estimate of the
population total is 16 + 2.5 x (sample total in stratum IT).

These estimates are shown for the 10 possible samples in table 21.3.1.
Again, we note that the estimate is unbiased. Its mean square error is

Z(error of estimate)®/10 = 487.50/10 = 48.75

The standard error is 7.0 or 19% of the true total—a marked improvement over
the standard error of 13.2 obtained with simple random sampling.

This sampling plan is called stratified random sampling with unequal
sampling fractions. The last part of the title denotes the fact that stratum I is
completely sampled and stratum Il is sampled at a rate of 2 units out of 5, or
40%. Stratification allows us to divide the population into subpopulations or
strata that are less variable than the original population and to sample different
parts of the population at difTerent rates when this seems advisable.

EXAMPLE 21.3.1—In the preceding example, suppose you expect that both e and f will give
high values. You decide that the sample shall consist of e, f, and one member drawn at random from
a, b, ¢, d. Show how to obtain an unbiased cstimale of the population total and show that the
standard error of this estimate is 7.7. {This sampling plan is not as accurate as the plan in which f
alonc was placed in a scparate stratum, because the actual value for ¢ is not very high.)

EXAMPLE 21.3.2—I( previous information suggests that fwill be high; 4 and e moderate; and
a, b, and ¢ small, we might try stratified sampling with three strata. The sample consists of /, either o
or e, and onc chosen from a, b, and ¢. Work out the unbiased estimate of the population total for cach
of the six possible samples and show that its standard error is 3.9, much belter than that given by our
two strata plan.

21.4—Probability sampling. The preceding examples are intended to
introduce probability sampling. This general name is given to sampling plans in
which

(i) every member of the population has a known probability of being
included in the sample
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© (i) the sample is drawn by some method of random selection consistent
with these probabilities
(iif) we take account of these probabilities of selection in making the
estimates from the sample

Note that the probability of selection need not be equal for all members of
the population; it is sufficient that these probabilities be known. In the example
in section 21.2, each member of the population had an equal chance of being in
the sample and each member of the sample received an equal weight in
estimating the population total. But in the example in section 21.3, member f
was given a probability 1 of appearing in the samptle, as against 2/5 for the rest
of the population. This inequality in the probabilities of selection was compen-
sated for by assigning a weight 5/2 to the other members when making the
estimate. The use of unequal probabilities produces a substantial gain in
precision for some types of populations (see section 21.8).

Probability sampling has some important advantages. By probability theory
it is possible to study the biases and the standard errors of the estimates from
different sampling plans. In this way much has been fearned about the scope,
advantages, and limitations of each plan. This information helps greatly in
selecting a suitable plan for a particular sampling job. As will be scen later, most
probability sampling plans also enable the standard error of the estimate and
confidence limits for the true population value to be computed from the results of
the sample. Thus, when a probability sample has been taken, we have some idea
as to how accurate the estimates are.

Probability sampling is by no means the only way of selecting a sample.
One alternative method is to ask someone who has studied the population to
point out average or typical members and then confine the sample to these
members. When the population is highly variable and the sample is small, this
method often gives more accurate estimates than probability sampling. Another
method s to restrict the sampling to those members that are conveniently
iccessible. If bales of goods are stacked tightly in a warehouse, it is difficult to
set at the inside bales of the pile and one is tempted to confine attention to the
wtside bales. In many biological problems it is hard to see how a workable
yrobability sample can be devised, for instance, as in estimating the number of

ouseflies in a town, field mice in a wood, or plankton in the ocean.

One drawback of these alternative methods is that when the sampte has
>een obtained, there is no way to determine how accurate the estimate is.
Meembers of the papulation picked as typical by an expert may be more or less
itypical. Outside bales may or may not be similar to interior bales. Probability
ampling formulas for the standard error of the estimate or for confidence limits
lo not apply to these methods. Consequently, it is wise to use probability
ampling unless it is clearly not feasible or prohibitively expensive.

In the following sections we give the formulas lor the standard errors of the
stimates from simple and stratified random sampling.

21.5—Standard errors for simple random sampling. (Y, (i =1,2,...,
V) denotes the variable being studied, the standard deviation, S, of the
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population is defined as
S=\VZY, - V)N -1 (21.5.1)

where‘ Y is .thef population mean of the ¥, and the sum = is taken over all
samplm_g units in the population. The symbol S is used instead of o because the
populapon 1s finite and in (21.5.1) we have divided by N — | instead of MV.

Since Y denotes the population mean, we shall use y to denote the sample
mean. In a simple random sample of size #, the standard error of y is (2):

o5 = (S/Yn) T =4 (21.5.2)

.wf'lere ® = n/Nis the sampling fraction, i.e., the fraction of the population that
is included in the sample.

The term o/ or in sample survey notation S/+/n is already familiar to
you; it is .the usual formula for the standard error of a sample mean. The factor
Vi —¢is known as the finite population correction. It enters because we are
sampling frqm a population of finite size & instead of from an infinite population
as assumed in the usual theory. Note that this term makes the standard error
Zero wh.cn n =N, as it should do, since we have then measured every unit in the
population. In practical applications the finite population correction is close to |
and can be omitted when n/N is less than 10%, i.e., when the sample includes
less than 10% of the population.

. T_h_ls result is very remarkable. In a large population with a fixed amount of
varlabxl;ty (a given value of S'), the standard error of the mean depends mainly
on the size of sample and only to a minor extent on the fraction of the population
sampled. qu a given S, the mean of a sample of 100 is almost as precise when
the pOpuIatlo.n si_ze is 200,000 as when the population size is 20,000 or 2000.
Soine people intuitively feel that one cannot possibly get accurate results from a
sample pf 100 from a population of 200,000, because only a tiny fraction of the
population has been measured. Actually, whether the sampling plan is accurate
or not depends primarily on the size of S/ vn. This shows why sampling can
bring about a great reduction in the amount of measurement needed.

For the estimated standard error of the sample mean we have

5= (VVT= ¢ (215.3)

where s is the standard deviation of the sample, calculated in the usual way.

If the sa_mplc i; usgﬂ to eg.limate the population toral of the variable under
study, the estimate is Ny and its estimated standard error is

Swy = (Ns/n) T =6 (21.5.4)

In_simple' ran(_iom sampling for atlributes, where every member of the
sample is classified into one of two classes, we take

S, = Vpq/nJl — ¢ (21.5.5)
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~here p is the proportion of the sample that lies in one of the classes. Suppose
hat 50 families are picked at random from a list of 432 families who have
clephones and that 10 of the families report they are listening to a certain radio
rrogram. Then p = 0.2, g = 0.8, and

5, = J(0.2)(0.8)/50 yT = 50/432 - 0.053

f'we ignore the finite population correction, we find 5, = 0.057.

The formula for s, holds only if each sampling unit is classified as a whole
110 one of the two classes. If your sampling unit is a group of elements and you
re classifying individual elements within each group, a different formula for s
ust be used. For instance, in estimating the percentage of diseased plants in fl)
:ld from a sample of 360 plants, the formula above holds if the plants were
lected independently and at random. To save time in the field, however, we
ight have chosen 40 areas, each consisting of 3 plants in each of 3 neighboring
ws., With this method the area (a group or cluster of plants) is the sampling
it. If the distribution of disease in the field were extremely patchy, it might
ppen that every area had either all plants diseased or no plants diseased. in
is event the sample of 40 areas would be no more precise than a sample of 40
Jependently chosen plants, and we would be deceiving ourselves if we thought
at we had a binomial sample of 360 plants.

The correct procedure for computing s, in this case is simple. Calculate p
sarately for each sampling unit and apply formula (21.5.3) for continuous

riates to these ps. That ts, if p; is the percentage diseased in the /th area, the
nple standard deviation is

s =E(pi - p)/(n-1)

ere n is now the number of areas (cluster units). Then, by (21.5.3),
5, = (/YT = ¢

“instance, suppose that the numbers of diseased plants in the 40 areas were as
:nin table 21.5.1. The standard deviation of the numbers of diseased plants in
-sample is 2.331. Since the proportions of diseased plants in the 40 arcas are
nd by dividing the numbers in table 21.5.1 by 9, the standard deviation of the
portions is s = 2.331/9 = 0.259. Hence (assuming N large),

s, = 5/ = 0.259/ a0 - 0.041

For comparison, the result given by the binomial formula is worked out.

TABLE 21.5.4
NUMBERS OF DISEASED PLANTS (OUT OF 9) IN EAClH OF 40 AREAS

28 v b7 0 4
0 0t 4 50

0 0 7 1
1 4 7 3 50

[= 8
N

3 3
2 0
grand total = 99

6 0 0 2
2 4 1 3

o
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From the total in table 21.5.1, p = 99/360 = 0.275. The binomial formula is

s, = Vpg/360 = J(0.275)(0.725)/360 = 0.024 —

giving an overoptimistic notion of the precision of p.

EXAMPLE 20.5.1—If a sample of 4 from the 16 townships of a county has a standard
deviation 45, show that the standard error of the mean is 19.5.

EXAMPLE 21.5.2—In the example in section 21.2, N = 6, n = 3, and the values for the 6

members of the population were 1, 2, 4, 6, 7, and 16. The formula for the true standard error of the
estimated population total is

ong = (Ns/n}JT = n/N

Verify that this formula agrees with the result, 13.2, which we found by writing down all possible
samples.

EXAMPLE 21.5.3—A simple random sample of size 100 is taken to estimate some proportion
(e.g., the proportion of males) whose value in the population is close 10 1/2. Work out the standard
error of the sample proportion p when the size of the population is (i) 200, (i) 500, (iii) 1000, (iv)
10,000, (v) 100,000. Note how little the standard error changes for IV greater than 1000.

EXAMPLE 21.5.4—Show that the coefficient of variation of the sample mean is the same as
that of the estimated population total.

EXAMPLE 21.5.5—In simple random sampling for attributes, show that the standard error of
p for given N and n is greatest when p is 50%, but that the coefficient of variation of p is largest when
p is very smalil.

21.6—Size of sample. At an early stage in the design of a sample, the
question, How large a sample do I necd? must be considered. Although a precise
answer may not be easy to find (for reasons that will appear), there is a rational
method of attack on the problem. At present we assume simple random sampling
and ignore n/N.

Clearly, we want to avoid making the sample so small that the estimate is
too inaccurate to be useful. Equally, we want to avoid taking a sample that is too
large so that the estimate is more accurate than we require. Consequently, the
first step is to decide how large an error we can tolerate in the estimate. This
demands careful thinking about the use to be made of the estimate and the
consequences of a sizable error. The figure finally reached may be to some
extent arbitrary, yet after some thought samplers often find themselves less
hesitant about naming a figure than they expecled.

The next step is to express the allowable error in terms of confidence limits.
Suppose that L is the allowable error in the sample mean and we are willing to
take a 5% chance that the error will exceed L. In other words, we want to be
reasonably certain that the error will not exceed an amount = L. Remembering
that the 95% confidence limits computed from a sample mean, assumed
approximately normally distributed, are

¥ +2S/vn
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we put L = 25//n. This gives, for the required sample size,
n=4S8*/L* (21.6.1)

To use this relation, we must have an estimate of the population standard
deviation S. Often a good guess can be made from the results of previou.s
samplings of this population or of similar populations. For example, an experi-
mental sample was taken in 1938 to estimate the yield per acre of wheat in
certain districts of North Dakota (7). For a sample of 222 fields, the variance of
the yield per acre from field to field was s* = 90.3 (in bu®). How many ficlds are
indicated if we wish to estimate the true mean yield within =1 bu, with a 5% risk
that the error will exceed 1 bu? Then

n —4s*/L* = 4(90.3)/1% = 361 fields

If this estimate were being used to plan a sample in a later year, it would be
regarded as tentative, since the variance between fields might change from year
to year.

! In default of previous estimates, Deming (3) has pointed out that o can_be
estimated from a knowledge of the highest and lowest values in the population
and a rough idea of the shape of the distribution. If h = highest — lowest, then
o = 0.294 for a uniform (rectangular) distribution, o = 0.24A for a symmetrical
distribution shaped like an isosceles triangle, and ¢ = 0.21# for a skew
distribution shaped like a right triangle.

If the quantity to be estimated is a binomial proportion, the allowable error
L for 95% confidence probability is

L =2+pq/n
The sample size required to attain a given limit of error L is therefore
n = 4pq/L’ (21.6.2)

In this formula, p, ¢, and L may be expressed either as proportions or as
percentages, provided they are all expressed in the same units. The result
necessitates an advance estimate of p. If p is likely to lie between 35% and 65%,
the advance estimate can be quite rough, since the product pq varies little for p
lying-between these limits. If, however, p is near 0% or 100%, accurate
determination of n requires a close guess about the value of p. .

If the computed value of n is found to be more than 10% ol the populal!on
size NV, a revised value n’ that takes proper account of the finite population
fraction is obtained from the relation

n' = n/(1 + ¢) (21.6.3)
For example, casual inspection of a batch of 480 seedlings indicates that about

15% are diseased. Suppose we wish to know the size of samp.le needed to
determine p, the percent diseased, to within +5%, apart from a 1-in-20 chance.
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Formula 21.6.2 gives n = 4(15)(85)/25 = 204 seedlings. At this point we might
decide that it would be as quick to classify every seedling as to plan a sample that
is over 40% of the whole batch. If we decide on sampling, we make a revised
estimate n':

s n_ 204 B
C1+¢ 1 +204/480
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The preceding formulas assume simple random sampling, which has only
limited use in practice. When a more complex plan such as stratified random
sampling is employed, a useful quantity known as the design effect of the plan -
enables simple random sampling formulas to be used more extensively. Kish (5)
defines the design effect (defl’) of a complex plan as the ratio of the variance of
the estimate given by the complex plan to the variance of the estimate given by a
simple random sample of the same size. The design effects of many plans in
common use can be estimated from their sample results. Suppose that a plan has
given deff = 2 in recent applications. If we want confidence limits =L when
using this plan, we first calculate the sample size needed with a simple random
sample. Then, if the finite population correction is negligible, we multiply the
sample size by 2, or in general by deff, for use with the more complex plan.

EXAMPLE 2}.6.1—A simple random sample of houses is to be taken to estimate the
percentage of houses that are unoccupied. The estimate is desired to be correct to within +1%, with
95% confidence. One advance estimate is that the percentage of unoccupied houses will be about 6%;
another is that it will be about 4%. What sizes of sample are required on these two forecasts? What
size would you recommend?

EXAMPLE 21.6.2—The total number of rats in the residential part of a large city is to be
estimated with an error of not more than 20%, apart from a 1-in-20 chance. In a previous survey, the
mean number of rats per city block was 9 and the sample standard deviation was 19 (the distribution
is extremely skew). Show that a simple random sample of around 450 blocks should suffice.

EXAMPLE 21.6.3—West (9) quotes the following data for 556 full-time farms in Seneca
County, New York.

Mean Standard Deviation per Farm
Acres in corn 8.8 9.0
Acres in small grains 42.0 395
Acres in hay 27.9 269

Il a coefficient of variation of up to 5% can be tolerated, show that a random sample of about
240 farms is required to estimate the total acreage of each crop in the 556 farms™with this degree of
precision. (Note that the finite population correction must be used.) This example illustrates a result
that has been reached by several different investigators; with small farm populations such as
counties, a substantial part of the whole population must be sampled to obtain accurate estimates.

21.7—Standard errors for stratified random sampling. The three steps in
stratified random sampling are:

1. The population is divided into a number of parts, called strata.
2. A random sample is drawn independently in each part.
3. Asan estimate of the population mean, we use
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Vo= ZNys /N (21.7.1)

where N, is the total number of sampling units in the hth stratum, y, is the
sample mean in the Ath stratum, and N = ZN, is the size of the population. Note
that weTust know the values of the N, (i.e., the sizes of the strata) in order to
compute this estimate.

Stratification is commonly employed in sampling plans for several reasons.
Differences between the strata means in the population do not contribute to the
sampling error of the estimate yy; it arises solely from variations among
sampling units that are in the same stratum. If we can form strata so that a
heterogeneous population is divided into parts, each of which is fairly homoge-
neous, we may expect a substantial gain in precision over simple random
sampling. In stratified sampling, we can choose the size of sample to be taken
from any stratum. This freedom of choice gives us scope to do an efficient job of
allocating resources to the sampling within strata. Furthermore, when different
parts of the population present different problems of listing and sampling,
stratification enables these problems to be handled separately. For this reason
hotels and large apartment houses are frequently placed in a separate stratum in
a sample of the inhabitants of a city.

We now consider the estimate from stratified sampling and its standard
error. For the population mean, estimate (21 .7.1) may be written

ysl = (I/N)ENhyh = EWhyh

where W, = N, /N is the relative weight attached to the stratum. Note that the
sample means y, in the respective strata are weighted by the sizes N, of the
strata. The arithmetic mean of the sample observations is no longer the estimate
of the population mean except with proportional stratification. If /Ny =
constant = n/N, as in proportional stratification, it follows that W), = N,/N =
n,/n so that in (21.7.1) the estimate y,, becomes

Ya = ZWiys=Zmyn/n=y (21.7.2)

since Tn,y, is the total of all observations in the sample.
Since a simple random sample is drawn in each stratum, (21.5.2) gives

V{ys) =Si(1 ”‘-(bh)/nh (21.7.3)

where ¢, = n,/N, is the sampling fraction in the hth stratum. Also, since
sampling is independent in different strata and the W, are known numbers,

V(¥a) = 2_ WiSi(l — &) /m, (21.7.4)
h

For the estimated standard error of y,,, this gives
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s(Ya) = \/Z W21 = ¢,) /s (21.7.5)
h

where s2 is the sample variance in the Ath stratum. L
In the example to be presented, the L strata were of equalize, so W, =

1/L; and proportional allocation was used, giving n, = n/L, ¢, = n/N = ¢. In this

case, (21.7.5) reduces to+/Zs; /nL T — ¢, or
s(;sl) = (Sw/\/ﬁ) Vl - (rb

where s2 is the average within-stratum mean square in the analysis of variance
of the sample data as a one-way classification.

The data in table 21.7.1 come from an early investigation by Clapham (1)
of the feasibility of sampling for estimating the yields of small cereal plots. A
rectangular plot of wheat was divided transversely into three equal strata. Ten
sampl;s, each a meter length of a single row, were chosen by simple random
sampling from each stratum. The problem is to compute the standard error of
the estimated mean yield per meter of row.

_Ip this example, s, = y240.4 = 15.5 and n = 30. Since the sample is only a
negligible part of the whole plot, n/N is negligible and

$(Yy) =S./Vn=155/y30=2.83¢

How effective was the stratification? In the analysis of variance, the mean
square .bctwecn strata is over four times as large as that within strata. This is an
mdlgauon of real differences in level of yield from stratum to stratum. [t is
possible to go further and estimate what the standard error of the mean would
have been if simple random sampling had been used without any stratification.

With simple random sampling, the corresponding formula for the standard error
of the mean is

s5=s/+n

w.here s is the ordinary sample standard deviation. In the sample under
dlscus.smn, s1s v295.3 (from the rotal mean square in table 21.7.1). Hence, as
an estimate of the standard error of the mean under simple random sampling we
might take s; = ¥295.3/ 30 = 3.14 g, as compared with 2.83 g for stratified

TABLE 21.7.1
ANALYSIS OF VARIANCE OF A STRATIFIED RANDOM SAMPLE
(wheat grain yields, g/m)

Source of Variation Degrees of Freedom Sum of Squares Mean Square
Between strata 2 2073 1036.5
Within strata 27 6491 2404
Total 29 8564 295.3




446 21: Sample Surveys

random sampling. Stratification has reduced the standard error by about 100%.
The design effect of the stratified plan, as described in section 21.6, is deff =
240.4/295.3 = 0.81.

This comparison is not quite correct for the reason that the value of s was
calculated from the results of a stratified sample and not, as it should have been,
from the results of a simple random sample. The approximate method that we
used is close enough, however, when stratification is proportional and at least ten
sampling units are drawn from every stratum.

EXAMPLE 21.7.1—In the example of stratified sampling given in section 21.3, show that the
estimate that we used for the population total was Ny, . From (21.7.3), verify that the variance of
the estimated population total is 48.75, as found directly in section 21.3. (Note that stratum | makes
no contribution to this variance because n, = N, in that stratum.)

21.8—Choice of sample sizes in the strata. 1 is sometimes thought that in
stratified sampling we should sample the same fraction from every stratum; i.e.,
we should make n, /N, the same in all strata, using proportional allocation. A
more thorough analysis of the problem shows, however, that the optimum
allocation is to take n, proportional to N,S,/c,, where S, is the standard
deviation of the sampling units in the Ath stratum and ¢, is the cost of sampling
per unit in the hAth stratum. This method of allocation gives the smallest
standard error of the estimated mean y, for a given tlotal cost of taking the
sample. The rule tells us to take a larger sample, as compared with proportional
allocation, in a stratum that is unusually variable (S, large) and a smaller
sample in a stratum where sampling is unusually expensive (¢, large). Looked at
in this way, the rule is consistent with common sense. The rule reduces to
proportional allocation when the standard deviation and the cost per unit are the
same in all strata.

To apply the rule, advance estimates of the relative standard deviations and
of the relative costs in different strata are needed. These estimates need not be
highly accurate; rough estimates often give results satisfactorily near the
optimum allocation. When a population is sampled repeatedly, estimates can be
obtained from the results of previous samplings. Even when a population is
sampled for the first time, it is sometimes obvious that some strala are more
accessible to sampling than others. in this event it pays to hazard a guess about
the difTerences in costs. In other situations we are unable to predict with any
confidence which strata will be more variable or more costly, or we think that
any such differences will be small. Proportional allocation is then used.

Dispropaestionate sampling pays large dividends when the principal variable
being measured has a highly skewed or asymmetrical distribution. Usually such
ponulations contain a few sampling units that have large values for this variable
and many units that have small values. Variables thal are related to ihe sizes of
cconomic institutions are often of this type, for instance, the total sales of
grocery stores, the number of patients per hospital, the amounts of butter
produced by creameries, family incomes, and prices of houses.

With populations of this type, stratification by size of institution is highly
effective and the optimum allocation is likely to be much better than propor-
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TABLE 21.8.1
DATA FOR TOTAL REGISTRATIONS PER SENIOR COLLEGE OR UNIVERSITY,
ARRANGED IN FOUR STRATA

Stratum: Num‘bcr Total Mean Standard

Number of .o‘; _ Registration per Deviation per

Stud;nls_ Institutions for the Institution Institution
per Institution N, Stratum Y, S,
Less than 1000 661 292,671

) 443 236

1000-3000 205 345,302 1,684 625
3000-10,000 122 672,728 5,514 2,008
Over 10,000 31 573,693 18,506 10,023

Total 1019. 1,884,394 3,860

tional allocat'ion. As an illustration, table 21.8.1 shows data for the number of
stu'dent_s per institution in a population consisting of the 1019 senior colleges and
universities in the United States. The data, which apply mostly to the 1952-1953
acaficmlc year, might be used as background information for planning a sample
Qesngne.d to give a quick estimate of total registration in some future year. The
Institutions are arranged in four strata according to size.

Note thgt the 31 largest universities (about 3% in number) have 30% of the
studepts, while the smallest group (which contains 65% of the institutions)
con}nbutes only 15% of the students. Note also that the within-stratum standard
deviation S), increases rapidly with increasing size of institution.

Tab!c 21.8.2 shows the calculations needed for choosing the optimum
sample sizes within strata. We are assuming equal costs per unit within all
strata. The products N,S, are formed and added over all strata. Then the
rclatlve? sample sizes, N,S, /N, S,, are computed. These ratios when multiplied
by the intended sample size n give the sample sizes in the individual strata.

As a consequence of the large standard deviation in the stratum with the
largest universitics, the rule requires 37% of the sample to be taken from this
stratum. Suppose we are aiming at a total sample size of 250. The rule then calls
for (Q.37)(250) or 92 universities from this stratum, although the stratum
contains only 31 universities in all. With highly skewed populations, as here, the
.0pu'mum allocation may demand 100% sampling, or even more, o,f the lar,gest
institutions. When this situation occurs, a good procedure is to take 100% of the

i
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TABLE 21.8.2
CALCULATIONS FOR OBTAINING THE OPTIMUM SAMPLE SIZES IN INDIVIDUAL STRATAS
Stratum: Number of Relative i
mbe Actual Samplin
Nsumbcr t)f Institutions Sample Sizes Sample Raplc 5
tudents N, N,S, NyS/EN,S, Sizes (%)
Less than 1000 661 155,996 0.1857
, 1857 65 10
1000-3000 205 128,125 1526 53 26
3000-10,000 122 244 976 2917 101 83
Over 10,000 31 310,713 0.3700 31 100
Total . 1019 839,810 1.0000 250
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large stratum and employ the rule n, « N,.S, to dieribute.the remginder of the
sample over the other strata. Following this procedure, we include in the sample
all 31 of the largest institutions, leaving 219 to be distributed among the first
three strata. In the first stratum, the size of sample is

219[0.1857/(0.1857 + 0.1526 + 0.2917)] = 65

The allocations (second column from the right of table 21.8.2) call for over
80% sampling in the second largest group of institutions (101 out of 122) but
only a 10% sample of the small colleges. In practice we might decide for
administrative convenience to take a 100% sample in the second largest group as
well as in the largest. . .

Is the optimum allocation much superior to proportional allocation? From
tables 21.8.1 and 21.8.2 and the sampling error formulas, we can calculate ‘the
standard errors of the estimated population totals Ny, or Ny by stratification
with optimum allocation or with proportional allocation, and by simple random
sampling. These standard errors are:

Sampling Plan s(Y)
Simple random sampling 216,000
Stratification, proportional aliocation 107,000
Stratification, optimum allocation 26,000

The reduction in the standard error due to stratification and the further
reduction due to optimum allocation are both striking.

If every unit lies in one or the other of two cl:asscs, (e.g., sprayeq, not
sprayed), the estimate of the population proportion p in one of the classes is

Pa = ZWip, (21.8.1)

where p, is the sample proportion in stratum k and W, = N,,/N as before. To
obtain the estimated standard error of py, substitute p, g, lor s in (21 .7.5)._

For the optimum choice of sample sizes within strata, takg 1y, proportlonal
to NyJpaaufcy- 1f ¢, is about the same in all strata, this rule implies that t.he
fraction sampled, n,/N,, should be proportional to vp,q,. Now the quantity
Jpg changes little as p ranges from 25% to 75%. Consequently, proportional
allocation is nearly optimal if the strata proportions lie in this range.

EXAMPLE 21.8.1-——From the data in table 21.8.1, verily the standard crf'or of 107,000
reported for the estimated total registration as given by a s(r'aLiﬁed random sample with n = 250 and
proportional allocation.

EXAMPLE 21.8.2—A sample of 692 families in lowa was taken to _d_etcrminc among ol'her
things the percentage of families with vegetable gardens in 1943. The families were classified into
three strata—urban, rural nonfarm, and farm—because these groups were expected 1o show
differences in the frequency and size of vegetable gardens. The sampling fraction was roughly the
same in all strata, a sample of 1 per 1000 being aimed at. The values of W, n,, and the numbers and
percentages with gardens are as follows:
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Sample Size Number with Percent with
Stratum : W, n, Gardens Gardens
Urban 0.445 © 300 218 727
Rural nonfarm 0.230 155 147 94.8
Farm 0.325 237 229 96.6
Total 1.000 692 594 85.8

The finite population corrections can, of course, be ignored. (/) Calculate the estimated
population percent p,, with gardens and give its standard error. (if) If the costs ¢, are constant, find
the optimum sample sizes in the strata and the resulting s(p,,). Assume the sample p, are the same

as those in the population. Note that the optimum n, = nW, \p,q, /ZW, puq,, where ¢, ~ 100 — P
when p, is expressed in percent. (iii) Estimate approximately the value of s(p) given by a simple
random sample with n = 692, Ans. (i) p, = 85.6%, SE = +1.27%. (/i) Optimum n, = 445, 115, 132;

SE(py) = =1.17%. (iii) SE = V(85.8)(14.2)/692 ~ +1.33. The gain in precision due to

stratification and the further gain due to optimum allocation are both modest. The deff factors are
0.91 and 0.77 for stratification with proportional and optimal allocation.

21.9—Systematic sampling. To draw a 10% sample from a list of 730
cards, we might select a random number between 1 and 10, say 3, and pick every
tenth card thereafter, i.c., the cards numbered 3, 13, 23, and so on, ending with
card number 723. A sample of this kind is known as a systematic sample, since
the choice of its first member, 3, determines the whole sample.

Systematic sampling has two advantages over simple random sampling. It
is easier to draw, since only one random number is required, and it distributes
the sample more evenly over the listed population. It has a built-in stratification.
In our example, cards 1-10, 11-20, etc., in effect form strata, one sampling unit
being drawn from each stratum. Systematic sampling differs, however, from
stratified random sampling in that the unit from the stratum is not drawn at
random; in our example, this unit is always in the third position. Systematic
sampling often gives substantially more accurate estimates than simple random
sampling and has become popular, for example, with samples taken regularly for
inspection and control of quality in mass production.

Systematic sampling has one disadvantage and one potential disadvantage.
It has no reliable method of estimating the standard error of the sample mean
(the formula for stratified sampling cannot be used, since only one unit is drawn
per stratum). Some formulas work well for particular types of populations but
cannot be trusted for general application. However, systematic sampling is often
a part of a more complex sampling plan such as two-stage sampling in which
unbiased estimates of the sampling errors can be obtained.

A potential disadvantage is that if the population contains a periodic type of
variation and if the interval between successive units in the sample happens to
equal the wavelength or a multiple of it, the sample may be badly biased. For
instance, a systematic sample of the houses in a city might contain too many (or
too few) corner houses; a systematic sample of families listed by name might
contain too many male heads of households or too many children. These

situations can be guarded against by changing the random start number
frequently.
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EXAMPLE 21.9.1—1n estimating mean per capita income per state, we might list the 48 U.S.
states (excluding Hawaii and Alaska) in order [rom east to west, putting neighboring states near one
another in the sequence, and draw a systematic sample of 1 in 4, with n = 12 states. For 1976
incomes (in $1000s), the following data give the four systematic samples.

Sample Total
1 54 65 65 54 64 61 64 63 54 62 73 56 7135
2 60 74 73 54 63 3.1 62 62 54 52 172 57 73.4
3 55 7.1 70 501 74 46 65 54 51 58 68 67 730
4 66 73 63 56 70 54 60 48 57 65 63 55 730

The population total is 292.9, the mean ¥ per state is 6102, and the variance S? is 0.5632 with 47 df.
Compare the standard errors of the estimated mean per capita income per state as given by () the
systematic sample, (/) a simple random sample of 12 states, (/i) a stratified random sampile with 12
strata and | unit per stratum. Note that lor the systematic sample, V(y,,) = Z(y;, — Y )*/4. Ans. (i)
SE(y,) = £0.0190, (if) SE(y) = 20.1876, (iii) SE(y,) = +0.1212. Why the systematic sample
does so much better than siratified random sampling is puzzling.

21.10—Two-stage sampling. Consider the following miscellaneous group
of sampling problems: (1) a study of the vitamin A content of butter produced by
creameries, (2) a study of the protein content of wheat in the wheat fields in an
area, (3) a study of red blood cell counts in a population of men aged 20-30, (4)
a study of insect infestation of the leaves of the trees in an orchard, and (5) a
study of the number of defective teeth in third-grade children in the schools of a
large city. What do these investigations have in common? First, in each study an
appropriate sampling unit suggests itself naturally—the creamery, the field of
wheat, the individual man, the tree, and the school. Second, and this is the
important point, in each study the chosen sampling units can be subsampled
instead of being measured completely. Indeed, subsampling is essential in the
first three studies. Obviously, we cannot examine al// the blood in a man in order
to make a complete count of his red cells. In the insect infestation study, it might
be feasible, although tedious, to examine all leaves on any selected tree. If the
insect distribution is spotty, however, we would probably decide to take only a
small sample of lecaves from any selected tree so as to include more trees.

This type of sampling is called two-stage sampling. The [irst stage is the
selection of a sample of primary sampling units—the creameries, wheat fields,
and soon. The second stage is the taking of a subsample of second-stage units, or
subunits, from each selected primary unit.

As illustrated by these examples, the two-stage method is sometimes the
only practicable way the sampling can be done. Even with a choice between
subsampling the units and measuring them completely, two-stage sampling gives
the sampler greater scope, since both the size of the sample of primary units and
the size of the sample that is taken from a primary unit can be chosen by the
sampler. In same applications an important advantage of two-stage sampling is
that it facilitates the problem of listing the population. Often it is relatively easy
to obtain a list of the primary units but difficult or expensive to list all the
subunits.

Listing is an important problem that we have not discussed. To use
probability sampling, we must have in effect a complete list of the sampling units
in the population in order to select a sample according to our randomized plan.
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In the national sample mentioned in section 1.3 for estimating unemployment,
the primary unit in urban areas is what is called a standard metropolitan area; in
rural areas it is a county or a group of small conliguous counties. These units
have all been defined and listed. No list of all the households or families in the
country exists. To list the trees in an orchard and draw a sample of them is
usually simple, but the problem of making a random selection of the leaves on a
tree may be very troublesome. With two-stage sampling this problem is faced
only for those trees that are in the sample. No complete listing of all leaves in the
orchard is required.

Assume for simplicity that the primary units are of equal size. The
population contains N, primary units, each containing N, second-stage units or
subunits. A random sample of s, primary units is drawn. From each selected
primary unit, n, subunits are drawn at random. If the sampling fractions n /N,
and n, /N, are small, we can apply to our results the random effects model
(section 13.3) for a one-way classification, the primary units being the classes.
Considered as an estimate of the population mean, the observation on any
subunit is the sum of two independent terms. One term, associated with the
primary unit, has the same value for all subunits in the primary unit and varies
from one primary unit to another with variance s?. The second term measures
differences between subunits in the same primary unit and has variance s2.

The sample as a whole contains n, independent values of the first term and

n,n, independent values of the second term. Hence the variance of the sample
mean per subunit is

V(¥) = si/n + s3/(nn) (21.10.1)

Furthermore, as shown in section 13.3, the two components of variance s2
and 53 can be estimated [rom an analysis ol variance of the sample results, as
given in table 21.10.1. 1t follows from table 21.10.1 that an unbiased sample
estimate of ¥ (y) in (21.10.1) is

i/(}) = 3%/(”1”2) =Z(y; - P)Z/[”l(”l - 1] (21.10.2)

When n, /N, is negligible, it can be shown that this very simple result holds also
(£) if the second-stage sampling fraction ny /N, is not negligible; (ii) if the
second-stage variance differs from one primary unit to another; and (i) if the
second-stage samples are drawn systematically, provided that the random start
is chosen independently in each sample primary unit.

As pointed out in section 13.3, the analysis of variance (table 21.10.1) is

TABLE 21.10.1 ——
ANALYSIS OF VARIANCE FOR A TWO-STAGE SAMPLE (SUBUNIT BASIS) —
Source of Variation df Mean Square Expected Value
Between primary units (p.u.) n -1 52 S+ n,S1
Between subunis withinp.u.  ny(n, - 1) 52 S?
St=Gt-shn  Si-s
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TABLE 21.10.2
ANALYSIS OF VARIANCE OF SUGAR PERCENT OF BEETS (ON A SINGLE BEET BASIS)

Source of Variation df Mean Square Expected Value
Between plots (primary units) 80 2.9254 S?2 + 108}
Between beets (subunits) within plots 900 2.1374 MY

== 82 (2.9254 — 2.1374)/10 ~ 0.0788  §3=12.1374

useful as a guide in choosing values of n, and n, for future samples. Table
21.10.2 gives the analysis of variance in a study by Immer (6), whose object was
to develop a sampling technique for the determination of the sugar percentage in
sugar beets in field experiments. Ten beets were chosen from each of 100 plots in
a uniformity trial; the plots were the primary units. The sugar percentage was
obtained separately. for each beet. To simulate conditions in field experiments,
the between-plots mean square was computed as the mean square between plots
within blocks of 5 plots. This mean square gives the experimental error variance
that would apply in a randomized blocks experiment with five treatments.

Hence, if a new experiment is to consist of n, replications with n, beets
sampled from each plot, the predicted variance ol a treatment mean is, from the
variance estimates in table 21.10.2

3= 0.0788/n, + 2.1374/(n,n,)

We shall illustrate three of the questions that can be tackled from these
data. How accurate are the treatment means in an experiment with 6 replica-
tions and 35 beets per plot? For this experiment we would expect

sy = 0.0788/6 + 2.1374/30 - 0.29%

The sugar percentage figure for a treatment mean would be correct to
within £(2) (0.29) or 0.58%, with 95% confidence, assuming y approximately
normally distributed.

If the standard error of a treatment mean is not to exceed 0.2%, what
combinations of n; and n, are allowable? We must have

0.0788/n, + 2.1374/(n,n,) = 0.2> = 0.04

You can verify that with 4 replications (n;, = 4), there must be 27 beets per plot;
with 8 replications, 9 beets per plot are sullicient; and with 10 replications, 7
beets per plot. As one would expect, the intensity of subsampling decreases as
the intensity of sampling is increased. The total size of sample also decreases
from 108 beets when 1, = 4 10 70 beets when n, = 10.

Some surveys entail a cost ¢, of selecting and getting access to a primary
unit to sample it and a cost ¢, of sclecting and measuring each sample subunit.
Thus, apart from overhead cost, the cost of taking the sample is

C=cn + ¢, n (21.10.3)
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In section 13.3 it is noted that for a given total cost, the value of n, that
minimizes V() is

”2=V01S§/(C‘2S%) (21.10.4)
With the sugar beets, \/S2/S? = +2.1374/0.0788 — 5.2, giving n, =52Ve /e,

In this study, cost data were not reported. If ¢, were to include the cost of
the land and the field operations required to produce one plot, it would be much
greater than c¢,. Evidently a fairly large number of beets per plot would be
advisable. In practice, factors other than the sugar percentage determinations
must also be considered in deciding on costs and number of replications in sugar
beet experiments.

21.11—Selection with probability proportional to size. In many important
sampling problems the natural primary sampling units are of unequal sizes.
Schools, hospitals, and factories all contain different numbers of individuals. A
sample of the houses in a town may use blocks as first-stage units, the number of
houses per block ranging from 0 to around 40. In national surveys the primary
unit is often an administrative arca—a county or a metropolitan district. A
relatively large unit of this type cutls down travel costs and makes supervision
and control of the ficld work more manageable.

When primary units vary in size, Hansen and Hurwitz (8) pointed out the
advantages of selecting primary units with probabilities proportional to their
sizes. To illustrate, consider a population with & = 3 schools having 600, 300,
and 100 children. A 5% sample of 50 children is to be taken to estimate the
population mean per child for some characteristic. The means per child in the
three schools are Y, = 2, Y, = 4, Y, = 1. Hence, the population mean per child
is

Y = [(600)(2) + (300)(4) + (100)(1)]/1000 = 2.5 (21.11.1)

For simplicity, suppose that only one school is chosen, the 50 children are
drawn at random from the selected school, and the variation in Y between
children in the same school is negligible. Thus the mean y of any sample is equal
to the mean of the school from which it is drawn.

In selecting the school with probability proportional to size (pps), the three
schools receive probabilities 0.6, 0.3, and 0.1, respectively, of being drawn. We
shall compare the mean square error of the estimate given by this method with
that given by selecting the schools with equal probabilities. Table 21.11.1
contains the calculations.

IT the first school is selected, the sample estimate is in error by 2.0 — 2.5 =
—0.5, and so on. These errors and their squares appear in the two right-hand
columns of table 21.11.1. In repeated sampling with probability proportional to
size, the first school is drawn 60% of Lhe time, the second school 30%, and the
third school 10%. The mean square error of the estimate is therefore

MSE... ={0.6)Y(0.25) + (0. 3225V + (B 1Y?2 25 = 1 05
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TABLE 21.11.1
SELECTION OF A SCHOOL WITH PROBABILITY PROPORTIONAL TO SIZE

Probability Mean per Error of
of Child Estimale _
School Children Selection =, Y, Y,-Y (Y, - Y)?
1 600 0.6 2 -0.5 0.25
2 300 0.3 4 +1.5 2.25
3 100 0.1 1 -1.5 2.25
Population T000 1.0 2.5

If, alternatively, the schools are drawn with equal probability, the mean square
error is

MSE,, = (1/3)(0.25 + 2.25 + 2.25) = 1.58

which is about 50% higher than that given by pps selection. o

The reason it usually pays to select large units with higher probabilities is
that the population mean depends more on the means of the large units thap on
those of the small units, as (21.11.1) shows. The large units are therefore likety
to give better estimates when most of the variation is between primary ynits.

You may ask, Does the result in our example depend on the choice or the
order of the means (2, 4, 1) assigned to schools 1, 2, and 3? The answer is yes.
With means 4, 2, 1, you will find MSE,, = 1.29 and MSE,, = 2.14, the Iam?r
being 66% higher. Over the six possible orders of the number‘s 1, 2, 4, the ratio
MSE,,/ MSE,, varies from 0.93 to 2.52. However, the ratio of the averages
MSE,,/MSE,, taken over all six possible orders does not erend on the
numbers 1, 2, 4. With N, primary unils in the population, the ratio s

W=D AN Y (=)
MSE. _ (21.11.2)

MSE,,, N —
" (Nlﬂl)_NlZ(ﬂ-i_ﬂ')—

where m, is the probability of sclection (relative size) of the ith school. Clea.rly,
the ratio exceeds onc unless all 7, are equal, that is, all schools are the same size.
Ir our example, this ratio is found to equal 1.47.

In two-stage sampling with primary units of unequal sizes, a simple method
is 1o select n, primary units with probability proportional to size and .take an
equal number of subunits (e.g., children) in every selected primary unit, as in

our illustration. This method gives every subunit in the population an equal °

chance of being in the sample. The method used in the sample (section 1.3) from
which unemployment figures are estimated is an extension of this mcthqd to
more than two stages of sampling. The sample meany per subunitis an unbiased

sotimanta Af tha nanulafinn mean If tha » nrimarv unite are drawn with

F//[l" ’\';‘ i

BN A
t
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replacement, an unbiased estimate of the variance of y is

s2=2 (7= W Imn — ] (21.11.3)

where y,; is the mean of the subsample from the ith primary unit.

We have illustrated only the simplest case. Some complications arise when
we select units without replacement. Often the sizes of the units are not known
exactly and have to be estimated in advance. Considerations of cost or of the
structure of variability in the population may lead to the selection of units with
unequal probabilities that are proportional to some quantity other than sizes. For
details, see the references. In extensive surveys, multistage sampling with

unequal probabilities of selection of primary units is the commonest method in
current practice. '

21.12—Ratio estimates. The ratio estimate is a diferent way of estimat-
ing population totals (or means) that is useful in many sampling problems.
Suppose that you have taken a sample to estimate the population total ¥ of a
variable y;, and that a complete count of the population was made on some
previous occasion. Let x; denote the value of the variable on the previous
occasion. You might then compute the ratio

R=3y/2x,=¥/x

where the sums are taken over the sample. This ratio is an estimate of the
present level of the variate relative to that on the previous occasion. On
multiplying the ratio by the known populaiion total X on Lhe previous occasion
(8), you obtain the ratio estimate Y, = RX = (y/x)X of the population total of
Y. Clearly, if the relative change is about the same on all sampling units, the
estimate of the population total will be a good one.

The ratio estimate can also be used when x; is some other kind of
supplementary variable. The conditions for a successful application of this
estimate are that the ratio y;/x; should be relatively constant over the population
and the population total X should be known. Consider an estimate of the total
amount of a crop, just alter harvest, made from a sample of farms in a region.
For ecach larm in the sample we record the total yield y; and the total acreage x;
of that crop. In this case the ratio R = 2y, /Zx; is the sample estimate of the
mean yield per acre. This is multiplied by the total acreage of the crop in the
region, which would have to be known accurately {rom some other source. This
estimate will be precise il the mean yield per acre varies little from-farm to
farm. A

In large samples the estimated standard error of the ratio estimate ¥ of the
population total from a simple random sample of size n is approximately

s(V) = N PO R

nin 1\

(21.12.1)
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TABLE 21.12.1
1970 AND 1960 POPULATIONS (MILLIONS) OF SiX LARGE CITIES

| 2 3 4 5 6 Total
1970 population, y; 3.36 2.82 7.90 1.95 1.51 1.23 1877 =Y
1960 population, x; 3.55 2.48 1.78 2.00 1.67 0.94 1842 =X

The ratio estimate is not always more precise than the simpler estimate Ny
(number of units in population x sample mean). It has been showp that in la'rge
samples the ratio estimate is more precise only if p, the corn?latlop coefficient
between Y and X, exceeds cv(x)/[2cv(p)]. Consequently, ratio estimates must
not be used indiscriminately, although in appropriate circumstances they
produce large gains in precision. . .

Sometimes the purpose of the sampling is to estimate a ratio, e.g., ratio of
dry weight to total weight or ratio of clean wool to total wool. The estimated
standard error of the estimate in large samples is then

This formula has already been given (in a different notation) at the end of
scction 19.8 in fitting an asymptotic regression.

As an itllustration in which the ratio estimate works well, table 21.12.1
shows the 1970 and 1960 populations of the six U.S. cities with 1970 populations
over 1 million. -

Suppose that we have to estimate the 1970 total populatioq of N = 6 cities
from a simple random sample of n = 2 cities. The 1970 populations range from
1.23 million to 7.90 million; but while some cities have declined and some
increased since 1960, the 1970/1960 ratios are relatively stable.

The estimate based on the sample meanis ¥’ = Ny = 6y. From (21.5.2) for
the standard error of y, the variance of Y'is

V(Y) = N's*(1 — ¢)/n = (36)(6.1057)/3 = 73.268

The standard error of this estimate is +8.56, giving a coeflicient of variation of
+46%—very inaccurate, _

The ratio estimate ¥, = (y/x)X = 18.42y /X is slightly biased. Since no
exact formula for its mean square error is known, table 21.12.2 presents the
estimates from all 15 simple random samples of size 2. From these we calculate
the mean square error as 2(¥, — Y)?/15. The 15 estimates Ny are also shown
for comparison. A ' _ A

Note that the bias in Y, +0.05, is trivial and that the 15 ratio estimates Y,
range from 17.18 to 21.81, as against a range from 8.22 10 33.78 for_the 15
unbiased estimates Ny. You may verify that MSE(Y,) = 1.201, giving a
coefficient of variation of 5.8% and a defl value of only 0.016 relative to Y.
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TABLE 21.12.2
RATIO ESTIMATES ¥4 — (J/X)X AND ESTIMATES ¥ = Ny
Sample Totals Sample Totals
Sample _ Sample _ A )
Units 1960 1970 Ye Y Units 1960 1970 Y v
1,2 6.03 6.18 18.88 18.54 2,6 3.42 4.05 21.81 12.15
1,3 133 11.26 18.31 33.78 3,4 9.78 9.85 18.55 29.55
1,4 5.55 5.31 17.62 15.93 3,5 9.45 9.41 18.34 28.23
1,5 522 487 17.18  14.61 3,6 872 913  19.29 227.39
1,6 4.49 4.59 18.83 13.77 4,5 3.67 3.40 17.37 10.38
2,3 10.26 10.72 19.25 32.16 4,6 2.94 3.8 19.92 9.54
2,4 4.48 4.77 18.38 14.31 5,6 2.61 2.74 19.34 8.22
2,5 4.15 4.33 19.22 12.99 Mean 18.82 18.77

21.13—Nonsampling errors. In many surveys, especially surveys dealing
with human subjects and institutions, sources of error other than those due to
sampling afTect the estimates. The most common are probably missing data. In a
survey taken by mail, only 30% of those to whom questionnaires are sent may
reply. In an interview survey made by visiting a sample of names and addresses,
perhaps 10% of the people may not be home and a further 4% refuse or are
unable to answer the questions.

With missing data our sample is smaller than planned, but a bigger
problem is that we often have reason to believe that the misses (the nonrespon-
dents) differ systematically from the respondents. Consequently, our sample of
respondents is biased, though evidence about the size of this bias may naturally
be hard to obtain. To illustrate from an oversimplified model, suppose that our
field method (mail, telephone, household interview) can reach a proportion w, of
the population but fails to get replies from a proportion wy; and that the two
subpopulations have means Y, ¥, for the variable being measured. Our sample
of size n, is a random sample of the respondents. The mean square error of the
sample mean p, is then '

MSE(y) = E(y, - Y)* = E(y,—wY, — Wo Yo)?
= E[() = 70 + w(¥, = Fo)I* = st/ + (T, - Vo)?

ignoring the finite population correction. With large samples, the bias term may
dominate this mean square error and our sampling error formulas may seriously
underestimate it and our real errors.

There are two strategies for attacking this problem. One is to use field
methods that reduce wy, for instance by insisting that at least three or four
attempts be made to reach and obtain answers from any sample member.
Alternatively, if supplementary information can be obtained about nonrespon-
dents that indicates (o some extent how they dilfer from respondents, another
stralegy is to usc a difTerent estimate that takes this knowledge into account.

[For example, suppose that males differ markedly from females in their
replies to one question. A planned sample of 1000 has 487 males and 513
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females, this being the proportion in the peopulation. Responses are obtained
from 410 males (84%) and 492 females (96%). Instead of the sample mean, we
use the estimate

Y = 0.487y,, + 0.513y,

If the maies who did not respond have relatively little bias as compared with.

those who did respond, this estimate should be almost free from bias. Another
approach uses available knowledge about nonrespondents to substitute or impute
estimates of the responses that they would have given. The assumptions in this
approach are similar to those made in substituting for a missing value in
randomized blocks from knowledge of the treatment and block corresponding to
the missing observation.

Errors of measurement, including those introduced in classifying and
coding the responses for analysis, are another source of inaccuracy. Sometimes
the question is poorly worded and has different meanings for different subjects.
Pretests and revisions of the questionnaire help here. In summary, the objective
in planning and conducting a survey should be to minimize the total error, not
just the sampling error. This involves the difficult job of allocating resources
among reduction of sampling errors, missing data, and errors of measurement,
and of deciding from what we know how best to use these rescurces for each
purpose.

21.14—Further reading. The general books on sample surveys that have
become standard (2, 3, 4, 5, 10) involve roughly the same level of mathematical
difficulty and knowledge of statistics. Reference (3) is oriented toward applica-
tions in business and (10) toward those in agriculture. Another good book for
agricultural applications, at a lower mathematical level, is (11).

Useful short books are (12), an informal, popular account of some of the
interesting applications of survey methods; (13), which conducts the reader
painlessly through the principal results in probability sampling at about the
mathematical level of this chapter; and (14), which discusses the technique of
constructing interview questions.

Books and papers have also begun to appear on some of the common
specific types of application. For sampling a town under U.S. conditions, with
the block as primary sampling unit, references (15) and (16) are recommended.
Reference (17), intended primarily for surveys by health agencies to check on
the immunization status of children, gives instructions for the sampling of
attributes in local areas, while (18) deals with the sampling of hospitals and
patients. Much helpful advice on the use of sampling in agricultural censuses is
found in (19), and (20) presents methods for reducing errors of measurement.

o TECHNICAL TERMS

design effect (deff) listing
finite population correlation nonsampling errors
imputing probability proportional to size (pps)
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probability sampling
proportional stratification
ratio estimates

stratified random sampling
systematic sampling
two-stage sampling
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