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FITTING A STRAIGHT LINE BY LEAST SQUARES

[

I

[}

| L X
1 .

Figure 1.3 A point outsideahe data space.

depends on variables X, X,,..., X,. We determine a regression equation.
from data which “cover™ certain areas of the “ X~space.” Suppose the point
Xo = (X0, X205, Xyo) lies outside the regions covered by the original
data. WHile we can mathematically obtain a predicted value ¥(X,) for-the
response at the point X, we must realize that rehance on such-a prediction
is extremely dangerous and becomes more dangerous the further X, lies
from the original regions, unless some additional knowledge is available
that the regression equation is valid in a wider region of the X-space. Note
that it is sometimes difficult to realize at first that a supgested point lies
outside a region in @ multi-dimensional space. To take a simple example,
consider the region.defined by the ellipse in Figure 1.3, within which all the
data points (X,, X,) lie; the corresponding Y values, plotted vertically up
from the page, are not shown. We see that there are points in the region for
which1 < X, < 9andforwhich2.4 < X, < 6.3. Although both coordinates
of P lie within these ranges, P itself lies outside the region. When more
dimensions are involved, misunderstandings of this sort easily arise.)

1.2. Linear Regression: Fitting a Straight Line

We have mentioned that in many situations a straighi-line relationship
can be valuable in summarizing the observed dependence of one variable
on another. We now show how the equation of such a straight line can be
obtained by the method. of least squares when data are available. Consider,
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}.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE ~ 9

in the printout on page 616, the twenty-five observations of variable 1 (pounds
of steam used per month) and variable 8 (average atmospheric tempera-
ture in degrees Fahrenheit). The COffCSpOl’ldll’lg, pairs of observations are
given in Table 1.1 and are plotted in Figure 1.4.

Table 1.1 Twenty-five Observations
of Variables {.and 8

Variable Number

Observation -

Number 1Y) - 8(X)
- 10.98 353
2 1113 29.7
3 12.51 30.8
4 8.40 58.8
5 927 61.4
6 8.73 713 -
7 6.36 74.4
8- 8.50 76.7
9 7.82 70.7
10 9.14 51.5
i 8.24 46.4
12 1219 289
13 11.88 28.1
14 957 39.1
1S 1094 - 468
16 9.58 48.5
17 10.09 59.3
18 8.11 700
19 683 70.0
20. 8.88 745
21 7.68 72.1
22 8.47 58.1
23 8.86 44.6
24 10.36 334
25 11.08 28.6

Let us tentatively assume that the regression line of variable 1 which we
shall denote by Y, on variable 8(X) has the form §, + f,X. Then we can
write the linear, first-order model

Y =8+ BX +¢ (1.2.1)
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10 FITTING A STRAIGHT LINE BY LEAST SQUARES
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Figure 1.4 The data and the fitted straight line.

. Ly
that is, for a given X, a corresponding observation Y consists of the value
Bo + B, X plus an amount ¢, the increment by which any individual ¥ may
fall off the regression line. Equation (1.2.1) is the model of what we believe:
We begin by assaming that it holds; but we shall have to inquire at a later
stage if indeed it does. In many aspects of statistics it is necessary to assume
a mathematical model to make progress. It might be well to emphasize that
what we are usually doing is to consider or tentatively entertain our model.
The model must always be critically examined somewhere along the line.
It is our “opinion™ of the situation at one stage of the investigation and our
“opinion” must be changed if we find, at a later stage, that the facts are against
it. B, and. B, are called the parameters of the model.

(Note. When we say that a model is linear or nonlinear, we are referring
to linearity or nonlinearity in the parameters. The value of the highest power
of a predictor variable in the model is called the order of the model. For
example, :

Y =80+ [ X + B X"+

is a second-order (in X) linear (in the f’s) regression model. Unless a model
is specifically called nonlinear it can be taken that it is linear in the param-
eters, and the word linear is usually omitted and understood. The order
of the model could be of any size. Notation of the form f3,, is often used in
polynomial models; B, is the parameter that goes with X while f3,; is the
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[.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE I

parameler that goes with X? = X X. The natural extension of this sort of
notation appears, for example, in Séctions 5.1 and 7.7.)

Now B, B,, and ¢ are unknown in Eq. (1.2.1), and in fact ¢ would be
- difficult to discover since it changes for each observation Y. However, B,
and B, remain fixed and, although we cannot find them exactly without
examining all possible occurrences of ¥ and X, we can use the information
provided by the twenty-five observations in Table 1.1 to give us estimates
by and b, of B, and f,; thus we can write |

Y =by + by X, o (1.2.2)

where Y, read “Y hat,” denotes the predicted value of Y for a given X, when
b and b, are determined. Equation (1.2.2) could then be used as a predictive
equation; substitution for a value of X. would provide a prediction of the
true mean: value of Y for that X. '

The use of small roman letters by and b, to denote estimates of the param-
eters given by Greek letters f; and B, is standard. However, the notation
B, and B, for the estimates is also frequently seen. We use the latter type of
notation ourselves in Chapter 10.

Our estimation procedure will be that of least squares. There has been a
dispute about who first discovered the method of least squares. It appears that
it was discovered independently by Carl Friedrich Gauss (1777-1855) and
Adrien Marie Legendre (1752-1833), that Gauss started using it before 1803
(he claimed in about 1795, but there is no corroboration of this earlier date),
and that the first account was published by Legendre in 1805. When Gauss
wrote in 1809 that he had used the method earlier then the date of Legendre’s
publication, controversy concerning the priority began. The facts are care-
fully sifted and discussed by R. L. Plackett in “Studies in the history of
probablllty and statistics. XXIX. The discovery of the method of least
squares,” Biometrika, 59, 1972, 239- 251 a paper we enthusxastlcally recom-
mend. Also recommended are accounts by C. Eisenhart, “Tne meaning of
“least’ in least squares,” Journal of the Washington Academy of Sciences, 54,
1964,24-33 (reprinted in Precision Measurement and Calibration,ed. H. H. Ku,
National Bureau of Standards Spe'cial Publication 300, Vol. I, 1969) and
“Gauss, Carl Friedrich,” International Encyclopedia of the Social Sciences,
Vol. 6, 1968, pp. 74-81, Macmillan Co., Free Press Div.,, New York; and a
related account by S. M. Stigler, “Gergonne’s 1815 paper on the design and
analysis of polynomial regression experiments,” Historia Mathematica, 1,
1974, 431-447 (see p. 433). '

Under certain assumptions to be discussed in Chapter 2, the method of
least squares has certain properties. For the moment we state it as our chosen
method of estimating the parameters without justification. Suppose we have
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12 FITTING A STRAIGHT LINE BY LEAST SQUARES

available n sets of observations (X,, ¥}), (X,, Ya),...,(X,, ¥). (In our
example n = 25.) Then by Eq. (1.2.1) we can write

Y= Bo + B X + &, S 123)
fori=1,2,...,n, so that the sum of squares of deviat.ions from the true
line is : ‘

§ = Zgiz = Z(Y. — Bo — ﬁx-.Xi)_z- (1.2.4)
=1 i=1 :

We shall choose our estimates by and b, to be the values which, when sub-
stituted for B, and f3, in Eq. (1.2.4), produce the least possible value of S;
see Figure 1.5.(Notethat X, Y;are the fixed numbers which we have observed).
We can determine by and b, by diflerentiating Eq. (1.2.4) first with respect to

Y A

The line fitted by least squares
is the one that makes the sum
of squares of all these vertieal
discrepancies as small as possible

Line

X

Figure 1.5 The vertical deviations whose sum of squares is minimized for the lcast squares
procedure.
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1.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE 13

B, and then with respect to B, and setting the results-equal to zero. Now

oS n

B 23 (Yi— By — B, X)

580 .':‘ 125
BB: Z (Y; — Bo — B.X))

so that the estimates by and b, are given by

(Y — b —-b,X)=0
A o (1.2.6)
Z.Xi(Yi - bo - bei) =0

where we substitute (bg, b,) for (8, B,), when we equate Eq. (1.2.5) to zero.
I'rom Eq. (1.2.6) we have

ZY,--—nbo—bIZX,-:O

i=1 i=1

; . . : (1.2.7)
ZXI'Yi"i bo ZXi — b, ZX:‘Z =
i=1] i=1 i=1 )
or
bon+b, ) X;= )Y,
. P (1.28)
boZX"’i"blZX"z :'ZXI)/‘

i=1 i=1]

v
ol

These equations are called the normal equations.
The solution of Eq. (1.2.8) for b, the slope of the fitted straight line, is

LX Y- [ X)) W _ Y (X = XY~ V)
> X2 — (X X)n > (X — X)?

where all summations are from i = 1 to n and the two expressions for by are
just slightly different forms of the same quantity. For, defining

= (X, X, X )= X,
Y = (Y1 + Yz + o+ Yn)/n = Z Y‘./”’.

b, = (1.2.9)

we have that
LXK =X - N=2 XY, ~XY Y- Y)Y X; +nXY
= ZX‘-Y‘- ~nXY

=Y XY= O x)C ¥



4 FITTING A STRAIGHT LINE BY LEAST SQUARES

This shows the equivalence of the numerators in (1.2.9), and a parallel
calculation, in which Y is replaced by X, shews the equivalence of the de-
nominators. The quantity ) X, is called the uncorrected sum of squares of the
X’s and () X;)*/n is the correction for the mean of the X’s. The difference is
called the corrected sum of squares of the X’s. Similarly, ) X,Y; is called.
the uncorrected sum of products, and (). X)) Y)/n is (W€ correction for
the means. The diflerence’is called the corrected sum of products of X and Y.
The first form in Eq. (1.2.9) is normally used for pocket-calculator evalua-
tion of b,, because it is easier to work with, and does not involve the tedious
adjustment of each X; and ¥; to (X; — X) and (Y; — Y) respectively. To
avoid rounding error, however, it is best to carry as many significant figures
as possible in this computation. (Such advice is good in general; rounding is
best done at the “reporting stage” of a calculation, not at intermediate
stages.) Most digital computers obtain more accurate answers using the__
second form in Eq (1:2:9)7thisis because of their roundoff characteristics.
“K*(:“O‘ﬁﬁmon, now and later, is to write

Sey = 3 (X; — XY, - F)

= Z(Xi - X)Yx

= ZXi(Y.' - 7) .

=Y X%~ (LX) ¥/n
=) XY, — nX?y.

Note that all these forms are equivalent. Similarly we can write

Sxx = 2. (X; — X)*

=) (X; — X)X,
= ZXI'.Z - (Z Xi)z/”
= > X — nX?

and -

Syy = Z(Yi - ?)2

= ). (Y, = V)Y, ,
=) Y= Y)n
=) Y:—nY2

The easily remembered formula for b, is then

bl"—— Sxy/Sxx. (1293)

The solution of Eq. (1.2.8) for by, the intercept at X = 0 of the fitted straight
line, is

bo =Y — b, X (1.2.10)
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1.2, LINEAR REGRESSION: FITTING A STRAIGHT LINE 15

Substituting Eq. (1.2.10) into Eq. (1.2.2) gives the estimated regression
equation -

Y = Y+b1(X - X), (1.2.11)
where b, Is given by Eq. (1.2.9).

Note thatif weset X = X in(1.2.11),then ¥ = ¥.This means that the point
(X, Y) lies on the fitted line. Let us now perform these calculations on the
‘data given as an example in Table 1.1. We find the lollowing:

n=25

Y Y, =1098 + 1113 + - - 4+ 11.08 = 235.60

Y = 23560/25 = 9.424

S X, =353 4297 4 -+ + 286 = 1315

X = 131525 = 52.60

Y, = (10.98)(35.3) + (11.13)(29.7) + - -- + (11.08)(28.6)
= 118214320

T X2 = (353)2 4 (29.7)% + -+ + (28.6)* = 76323.42

_ L XY — (XD Y/

II

b 2
’ X2 (LX) n |
p. _ 118214320 — (1315)(235.60)/25 _ —571.1280
b 7632342 — (1315)%/25 ~ 715442
b, = —0.079829.

The fitted equation is thus
Y=Y +b(X-X)
Y = 9.4240 — 0.079829(X — 52.60)

Y = 13.623005 — 0.079829X.

The fitted regression line is plotted in Figure 1.4. We can tabulate for each
of the twenty-five values X;, at which a-Y; observation is available, the fitted
value ¥; and the residual Y, — Y, as in Table 1:2. The residuals are given to
the same number of places as the original data.

Note that since ¥, = Y + b, (X, — X),
Y- %= (Y, - V)= b(X, - X),

Z(Y 2(Y—— 7) - by ¥ (X, - X)

i=1
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16 FITTING A STRAIGHT LINE BY LEAST SQUARES

Table 1.2 Observations, Fitted Values, and Residuals

Observation A
Number Y; ¥ Y, = Y
I 1098 . 10.81 0.17
2. 11.13 11.25 . =012
3 1251 117 1.34
4 8.40 8.93 —0.53
5 9.27 8.72 0.55
6 8.73 793 0.80
7 6.36 7.68 ~1.32
8 8.50 7.50 1.00
9 7.82 7.98 —~0.16
10 "9.14 9.03 0.11
1 8.24 9.92 ~1.68
12 12.19 11.32 0.87
13 11.88 1138 . . 050
14 9.57 10.50 ~093
(5 10.94 9.89 1.05
16 9.58 9.75 -0.17
17 10.09 8.89 1.20
18 8.11 1803 0.08
19 6.83 -7 8.03 —~1.20
20 8.88 7.68 : 1.20
21 7.68 7.87 ~0.19
22 8.47 8.98 —0.5]
23 8.86 10.06 —~1.20
24 10.36 10.96 ©—0.60
25 11.08 11.34 —0.26

Thus the residuals sum to zero. In practice the sum may not be exactly zero
"due to rounding. The sum of residuals in any regression problem is always
zero when there is a S, lerm in the model as a consequence of the first
normal equation. The omission of ff, [rom a model implies that the response
is zero when all the predictor variables are zero. This is a very strong assump-
tion'which is usually unjustified. In a straight-line model ¥ = fio + ;X + ¢
omission of f§, implies that the line passes through X = 0, Y = 0-—that is,
that the line has a zero intercept B, = 0 at X = 0. We note here, before the
more general discussion in Section 5.4, that physical removal of ff, [rom the
model is always possible by “centering™ the data, but that this is quite
. different from sctting i, = 0. For example, il we write Eq. (1.2.1) in the form

Y-V =P+ X=-YV)+ 53X -X)+¢



1.3. THE PRECISION OF THE ESTIMATED REGRESSION 17
or
y=Bo + Bix + ¢
say, where y =Y = ¥, B = f, + f,X — ¥, x = X — X, then the least-

2

squares estimates of f," and f3, are given as follows:

p 2= X0—P) XX = X% - )
: Z(X.‘_)_C)Z Z(Xi_/?)z

identical to Eq. (1.2.9); while

by =y —b,x =0, since X = y = 0,

whatever the value of b,. Because this always happens, we can write the
centered model as

Y- F =X —F)+e

omilling the B, (intercept) term entirely. We have lost one parameter but
there is a corresponding loss in the data since the quantities ¥; — Y, i =
1, 2,...,n represent only (n = 1) separate pieces of information due to the
fact that their sum is zero, whereas Y, Ys,. .., Y, represent n separate pieces
of information. Effectively the “lost” pieces of information has been used
to enable the proper adjustmerits to be made to the model so that the inter-
cept term can be removed.

1.3. The Precision of the Estimated Regression

We now tackle the question of what measure of precision can be attached
to our estimate of the regression line. Consider the following identity:

Y, - Y=Y -Y (¥ -7 (1.3.1)

What this means geometrically for the fitted straight line is illustrated in
Figure 1.6. The residual e; = Y; — Y, is the difference between two quantities:
(i) the deviation of the observed Y; {rom the overall mean Y, and (ii) the devia-
tion of the fitted ¥, from the overall mean ¥, Note that the average of the ¥,
namely '

2 V=3 (bo + by X)/n
= (nby + bnX)/n
=by + b X
=Y.
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18 FITTING A STRAIGHT LINE-BY LEAST SQUARES
Y A

- I-(;'b"

1 ’ 1o k/ﬂ)_

Fitted line ¥ = by + b, X

X

Figure 1.6 Geometrical rﬁeaning of the identity (1.3.1).

In other words, the average of the ¥’s is the same as the average of the Y’s.
This fact also reconfirms that ) e; = Z(Y f’) =nY —nY =0, as
previously stated.

. We can also rewrite Eq. (1.3.1) as

BTy == N+ (hi- .

If we square both Sidgs of thisand sum fromi = 1, 2,...,n, we obtain
DINC /D O LD W ¢ AR LIS 3¢ AN 5 O} (1.3.2)

The cross-product term, CPT = 22(?1- — Y)(Y; — ¥) can be shown to
vanish by applying Eq. (1.2.11) with subscript i, so that

?i - Y= b (X — X)
Y~ %i=Y~-Y-b(X; - X)
It follows that the cross-préduct term is

CPT = 25 b, (X, — X)(Y, = T) — by(X; — X))
= 2b1{5xr - bISXX}

by Eq. (1.2.9a). It is also clear that
Z(?x - Y)Z = Zblz(Xi - :\;)2
' = blzsxx
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1.3. THE PRECISION OF THE ESTIMATED REGRESSION 19

- We now return to a discussion of Eq. (1.3.2). The quantity (¥, — Y) is the
deviation of the ith observation from the overall mean and so the left-hand
side of Zq. (1.3.2) is the sum. of squares of deviations of the observations
from the mean; this is shortened to SS about the mean, and is also the corrected
sum of squares of the Y’s. Since Y, — 'Y is the deviation of the predicted value
of the ith observation from the mean, and Y, — Y, is the deviation of the ith
observation from its predicted or fitted value (the ith residual), we can express
Eq. (1.3.2) in words as [ollows:

Sum of squares  Sum of squares 4 Sum of squares
about the mean  due to regression . about regression

This shows that, of the variation in the Y’s aboul their mean, some of the
variation can be ascribed to the regression line and some, ) (Y; — Y,-)_Z,
to the fact that the actual observations do not all lie on the regression line
—if they all did, the sum of squares about the regression would be zero!
From this procedure we can see that a way of assessing how useful the
regression line will be as a predictor is to see how much of the SS about the
mean has fallen into the SS due to regression and how much into the SS
about regression. We shall be pleased if the SS due to regression is much
greater than the SS about regression, or what amounts to the same thing
if the ratio R* = (SS due to regression)A(SS about mean) is not too far
from unity. =~ T T T e
Any sum of squares has associated with it a number called its degrees of

[reedom. This number indicates how many independent pieces of information
involving the n independent numbers Y}, Y,,..., ¥, are needed to compile
the sum of squares. For example, the SS about the mean needs (n — 1)
independent pieces (for of the numbers ¥, — Y, ¥, — Y,..., ¥, — Y, only
(n — 1) are independent since all n numbers sum to zero by definition of the
mean). We can compute the SS due to regression from a singl¢ function of
Y, Ya,..., Y, namely b, [since Y (¥, — Y)? = b,*) (X; — X)?], and so
this sum of squares has one degree of freedom. By subtraction, the SS about

regression, which we shall in future call the residual sum of squares (it is, .
as we can see, the sum of squares of the residuals Y, — Y, in [act) has (n.— 2)
degrees of freedom (d). This reflects the fact that the present residuals are
from a fitted straight line model which required estimation of two parameters.
In general, the residual sum of squares is based on (number ol observations—
number of parameters estimated) degrees of freedom. Thus corresponding

to Eq. (1.3.2), we can show the split of degrees of freedom as

Mm—1=14+(n-—-2). (1.3.4)

From Egs. (1.3.2) and (1.3.4) we can construct an analysis of variance table
in the form of Table 1.3. The *Mean Square” column is obtained by dividing
each sum of squares’entry by its corresponding degrees of freedom.
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20 FITTING A STRAIGHT LINE BY LEAST SQUARES

Table 1.3 Analysis of Variance (ANOVA) Ta blé; the Basic Split

"Source of Degrees of Freedom Sum of Squares Mean Square /;
Variation (df) . (SS) (MS) .
Due to rcgrcésion | 1 i(?. -y’ MSke,

i=1
é:sgtgi)g,ressxon - : i;(}} ~ o &= - 5—52)*
et e S X

* Some " regression programs have documentation that labels the quantity
S (Y = Y)(n — 1) = Syy/(n — 1) as s*. For us, this would be true only if the
model fitted were Y = f§ 4+ & In this case, the regression sum of squares due to b,
would be (as it is in general—see, for example, Table 1:4) nY? = () Y)*/nand S,y
would be the appropriate residual sum of squares for the corresponding fitted model
P=¥ | : -

A more general form of the analysis of variance table, which we do not
need here but which is useful for comparison purposes later Ysee Section
2.2), is obtained by incorporating the correction factor for the mean of the
Y’s into the table where, for reasons explained in’Section 2.2, it is called
SS(by). The table takes the form of Table 1.4. (Note the abbreviated headings.)
(An alternative way of presenting Table 1.4 is to drop the line labelled “ Total,
corrected” and the rule above 1t The “Total" line is then the sum of the
remaining three entries.) '

‘When the calculations for Tables 1.3 and 1.4 are actually carried out on a
pocket calculator, the residual SS is rarely calculated directly as shown, but
is usually obtained by subtracting “SS(b;|by)” from the “total, corrected,
SS.” The sum of squares due to regression SS(b,|by) can be calculated a
number of ways as follows. (All summations are over i=12...,n.

$wmm=23ﬂ—Yﬁ:mQ}m~XXxf%}=m&, (1.3.5)
D (X; = X)(Y, = ))*  Siy

CA=D S ST

_ {Z XiY — (Z X.)(Z Y.)/”}_Z _ Sty (1.3.7)

TS XTI QO X)Yn T Sy -
(X~ X)¥)

“qu_;y (1.3.8)
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1.3. THE PRECISION OF THE ESTIMATED REGRESSION 21

Table 1.4 Analysis of Variance (ANOVA) Table lncorporuting SS(by)

Source df SS MS

Due to b, | b, 1 SS(blbo) = > (Y, = ¥)* MSg.,
i=1
Residual n-2 Y (Y - By s?
i=1
Total, corrected n~1 Y (Y= Y)
’ i=1

Correction factor

l SS(bo) = ) Jn = 72
(Due to bg) (o) (i; Yl) =

Total n Y Y2

We leave it to the reader to verily the algebraic equivalence of these formulas,
which follow from algebra previously given on pp. I4 and 18. Of these [orms,
Eq. (1.3.5) is the easiest to use on a pocket calculator because the two pieces
have already been calculated to fit the straight line. However, rounding off
of b can cause inaccuracies, so Eq. (1.3.7) with division performed last is the
formula we recommend for calculator evaluation.

Note that the total corrected SS can be written and evaluated as

Sy =3 (5~ V) = $ 12 = (T 0¥ (139)
= Z Y2 — nY? (1.3.10)

The notation SS(b,|b,) is read “the sum of squares for b, after allowance
has been made for by.” The purpose of this notation is explained in Sections
22 and 2.7.

The mean square about regression, s? will provide an estimate based on
n — 2 degrees of freedom of the variance about the regression, a quantity
we shall call gy.y. If the regression equation were estimated from an in-
definitely large number of observations, the variance about the regression
would represent a measure of the error with which any observed value of Y
could be predicted from a given value of X using the determined equation
(see note 1 of Secfion 1.4).
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22 FITTING A STRAIGHT LINE BY LEAST SQUARES

We shall now carry out the calculations of this section for our example
and then discuss a number of ways the regression equation can be examined.
The SS due to regression is, using (1.3.7),

_ {2 XY= () X)Q, Yo/n)?
X2 -G X)) n)
— (—571.1280)%/7154.42
— 45.5924, |
The Total (corrected) SSis ). Y2 — (). Y)*/n
| = 2284.1102 — (235.60)%/25
= 63.8158

Our estimate of 62.4 is 5% = 07923 based on 23 degrees of freedom. The
F-value will be explained shortly.

Table 1.5 The An;alysis of Variance Table for the Example

Source df SS MS Calculated F Value
* Regression I 45.5924 45.5924 57.54

Residual 23 18.2234 s? = 07923

Total, corrected 24 - 63.3158

Skeleton Analysis of Variance Table

" A skeleton analysis of variance table consists of the “source” and “df”
columns only. In many situations, for example as in Section 1.8 when com-
paring several possible arrangements of experimental runs not yet performed,
it is useful to compare the corresponding skeleton analysis of variance tables

- to see which might be most desirable.

1.4. Examining the Regression Equation

Up to this point we have made no assumptions at all that involve prob-
ability distributions. A number of specified algebraic calculations' have
been made and that is all. We now make the basic assumptions that, in
the model Y--—,BO+,/3 X +€‘,1=1 2,.

1. ogisa random vanable wnh mean. zero and variance ¢? (unknown),
that is, E(g;) = 0, V(g) = o

D-16
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I.4. EXAMINING THE REGRESSION EQUATION 23

2. ¢ and g; are uncorrelated, i # j, so that

cov(g;, ¢;) = 0.
Thus
E(Y) = Bo + B X:, V(YD) =0?

and Y; and Y, i # j, are uncorrelated. A further assumption, which is not
immediately necessary and will be recalled when used, is that

3. ¢ is a normally distributed random variable, with mean zero and
variance o* by (1), that is, -

8,- ~ N(O, 02).

Under this additional assumption, ¢;, g; are not only uncorrelated but
necessarily independent. '
The situation is illustrated in Figure 1.7.

Notes : :

1. o® may or may not be equal to ¢2., the variance about the regression
mentioned earlier. If the postulated model is the true model, then o* =
o%.y. 1f the postulated model isnot the true medel, then 6% < g .. It follows
that s?, the residual mean square which estimates 7., in any case, is an
estimate of ¢? if the model is correct but not otherwise. If o3,y > 0% we
shall say that the postulated model is incorrect or suffers from lack of fir.
Ways of deciding this will be discussed later.

Figure 1.7 Each response observation is assumed to come {rom a normal distribution centered
vertically at the level implied by the assumed model. The variance of each normal distribution
is assumed to be the same, o2
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flex psi> Im2 <- Im(PSI ~ log10(1 + SV) + RD~2 + CP70.5)
flex psi> print(summary(lm2))

Call: Im(formula = PSI ~ log10(1 + SV) + RD"2 + CP~0.5)
Residuals:
Min 1Q Median 3Q Max
-0.5458 -0.3319 -0.04131 0.2205 1.107

Coefficients:
Value Std. Error  t value Pr(>|t))
(Intercept)  5.0331  0.1263  39.8634  0.0000
loglo(1 +SV) -1.9179 0.1395 -13.7457  0.0000
IRD"2) -1.3889 0.3326 -4.1756  0.0001
I(CP~0.5) -0.0087 0.0070 -1.2417  0.2185

Residual standard error: 0.3858 on 70 degrees of freedom
Multiple R-Squared: 0.8442

Correlation of Coefficients:
(Intercept) loglO(1 + SV) I(RD”2)

. logl0(1 + SV) -0.8506

I(RD"2) -0.2268 0.0134
I(CP"0.5) 0.3000 -0.6496 0.0270
flex psi> print(anova(lm2))

Analysis of Variance Table
Response: PSI

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(®
loglo(1 +SV) 1 53.6505 53.6505 360.538 0.000000
IRD"2) 1 2.5549 25549 17.169 0.000094
I(CPM.5) 1 0.2294 02294 1.5420.218502
Residuals 70  10.4165 0.1488

Value Std. Error  t value Pr(>lt))
(Intercept) 4.8316 0.1188 40.6643  0.0000
loglO(1 +SV) -1.2857 0.1822 <7.0576  0.0000
loglo(1 +RDV) -1.1083  0.2365 -4.6856  0.0000
IRDM2) -1.1902 0.2949 -4.0365  0.0001
I(CP"0.5) -0.0114  0.0062 -1.8517  0.0683

Residual standard error: 0.3384 on 69 degrees of freedom
Multiple R-Squared: 0.8818

Correlation of Coefficients:
(Intercept) logl10(1 + SV) logl0(1 + RDV) [(RD"2)
logl0(1 + SV) -0.8008

logl0(1 +RDV) 0.3619 -0.7406
I(RD*2) -0.2612 0.1154 -0.1438

I(CP~0.5) 0.3126 -0.5045 0.0945 0.0131
flex psi> print(anova(lm3)) -
Analysis of Variance Table

Response: PSI

Terms added sequentially (first to last)

Df Sum of Sq Mean Sq F Value  Pr(F)

loglo(1 +SV) 1  53.6505 53.6505 468.466 0.0000000

logl0(1 +RDV) 1 3.0620 3.0620 26.737 0.0000022

IRD™2) 1 1.8440 1.8440 16.1010.0001503

I(CP"0.5) 1 0.3927 0.3927 3.4290.0683462
Residuals 69 - 7.9021 0.1145

flex psi> print(anova(lm2, Im3))
Analysis of Variance Table

Response: PSI

Terms Resid. Df

flex psi> Im3 <- Im(PSI ~ logl10(1 + SV) + logl0(1 + RDV) + RD*2 + CP"0.5) 1 log10(1 + SV) + RDA2 + CP~0.5 70 10.4165
flex_psi> print(summary(lm3)) 2 1ogl0(1 + SV) + log10(1 + RDV) + RDA2 + CP*0.5 69 7.9021
Call: Im(formula = PSI ~ log10(1 + SV) + logl0(1 + RDV) + RD"2 + CP"0.5) Test Df Sum of Sq F Value Pr(F)
Residuals: 1

Min 1Q  Median 3Q Max 2 +leglO(1 +RDV) 1 2.5143421.9547 0.0000135804

-0.5645 -0.2148 -0.05779 0.204 0.7287

Coefficients:
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source("try-mirx.s")
> #source(flexdat.s")
attach(flex.frame.new, 2)

- >Y <-PSI

> X <- ¢bind(1, log10(1 + SV), RD*2, CP"0.5)

> dimnames(X)[12]] <- ¢("1", "logl0(1+SV)", "RD"2" "CP~0.5")
> XT <-1(X)

> XTX <- XT %*% X

> XTXI <- solve(XTX)

>H <- X %*% XTXI %*% XT

> beta <- XTXI %*% XT %*% Y

> print(X[1:4, 1:4])

11oglo(1+SV) RD*2  CPM.5

IL-F31 0.5797836 0.0100 0.000000
IL-F41 1.33243850.0484 18.520259
IL-F51 1.0086002 0.0064 2.828427
IL-F61  0.65321250.0064 0.000000

> print(Y[1:4])
TL-F3 IL-F4 IL-F5 IL-F6
43 24 33 44
> print(XT[1:4, 1:4])
IL-F3 IL-F4 IL-F5 IL-F6
1 1.0000000 1.000000 1.000000 1.0000000
1log10(1+SV) 0.5797836 1.332438 1.008600 0.6532125
RD”2 0.0100000 0.048400 0.006400 0.0064000
CP~0.5 0.0000000 18.520259 2.828427 0.0000000
> print(XTX][1:4, 1:4])
' 11ogl0(1+SV) RD"2
1 74.00000

CP"0.5
75.243560 5.623900 565.93854
loglO(1+SV) 75.24356  89.753868 5.546208 746.98887
RD"2  5.62390 5.546208 1.775583  39.05244
CP~0.5 565.93854 746.988867 39.052441 9582.00000
> print(XTXI[1:4, 1:4])
. 1 loglO(1+SV) RD”2 CP".3
1 0.107125429 -0.100699961 -0.0639961226 0.0017840269
logl0(1+SV) -0.100699961 0.130828344 0.0041787264 -0.0042684738
RD”"2 -0.063996123 0.004178726 0.7435218138 0.0004237183
CP~0.5 0.001784027 -0.004268474 0.0004237183 0.0003300256
> print(beta)
[.1]
1 5.03306638

logl0(1+SV) -1.91792059
RD”2 -1.38893699
CP"0.5 -0.00870147
> Im2 <- Im(PSI ~1ogl0(1 + SV) + RD™2 + CP"0.5)
> print(summary(lm2))

Call: Im(formula = PSI ~ 1og10(1 + SV) + RD"2 + CP*0.5)
Residuals:

Min 1Q  Median 3Q  Max
-0.5458 -0.3319 -0.04131 0.2205 1.107
Coefficients:
Value Std. Error  t value Pr(>|t|)

(Intercept)  5.0331  0.1263 398634  0.0000
loglO(1 +SV) -1.9179 0.1395 -13.7457  0.0000
IRD”2) -1.3889  0.3326 -4.1756  0.0001
I(CP~0.5) -0.0087 0.0070 -1.2417  0.2185

Residual standard error: 0.3858 on 70 degrees of freedom
Multiple R-Squared: 0.8442 )
F-statistic: 126.4 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:
(Intercept) logl0(1 + SV) I(RD"2)
logl0(1 + SV) -0.8506

IRD"2) -0.2268 0.0134
I(CP™0.5) 0.3000 -0.6496 0.0270
> print(anova(lm2))
Analysis of Variance Table

Response: PSI

Terms added sequentially (first to last)
Df Sum of Sg Mean Sq F Value Pr(F)
loglo(1+SV) 1 53.65053 53.65053 360.5376 0.0000000

IRD"2) 1 2.55490 2.55490 17.1692 0.0000943
I(CP"0.5) 1 022942 0.22942  1.54180.2185019
Residuals 70 10.41649 0.14881

> detach(2)

sink()





