
The 76th Annual Meeting of TRB

MODIFIED PCA STRESS ANALYSIS AND THICKNESS DESIGN PROCEDURES

Y. H. Lee, J. H. Bair, C. T. Lee, S. T. Yen, Y. M. Lee Tamkang University Taiwan, R.O.C.

OBJECTIVES

- Modify PCA Stress Analysis & Thickness Design Procedure
- Develop a User-friendly TKUPAV Program for Automatic Stress Calculation & Thickness Design
- Applicable to Metric & English Systems

RESEARCH APPROACH

- Review PCA Thickness Design Procedure
- Effects of Curling & Warping
- Modified PCA Stress Analysis and Thickness Design Procedure
- Development of TKUPAV Program
- Validation of TKUPAV Program
- **Conclusions and Recommendations**

PCA THICKNESS DESIGN

- J-SLAB Program (Edge Stress)
- Equivalent Stress Calculations
- Fatigue Analysis (& Erosion Analysis)
- But Did NOT Consider Curling Stress
- PCAPAV Program

 $\frac{1}{\sum_{i=1}^{m} n_i} D_r = \sum_{i=1}^{m} \frac{n_i}{N_i}$

PCA CSimplifications & Limitations

- Fixed Slab Size: L=180 in., W=144 in.
- Fixed Gear Configurations: a=4.72 in., t=50 in., s=12 in. (Axle Width D=72 in.)
- Fixed Material Properties: E=4 Mpsi, ~=0.15, AGG=25,000 psi

PCA CEquivalent Stress Calculation

$$f_{eq} = \frac{6M_e}{h^2} \bullet f_1 \bullet f_2 \bullet f_3 \bullet f_4$$

 $Me = f(\}, k)$ (in English System) SA/NS, TA/NS, SA/WS, TA/WS

PCA CFatigue Analysis

$$\begin{cases} \log N_f &= 11.737 - 12.077 \times SR & SR \ge 0.55 \\ N_f &= \left(\frac{4.2577}{SR - 0.4325}\right)^{3.268} & 0.45 < SR < 0.55 \\ N_f &= \text{Unlimited} & SR \le 0.45 \end{cases}$$

 $SR = t/S_c$, N_f = Allowable Load Repetitions

EFFECTS OF CURLING & WARPING

 Thermal Curling Stress (Positive UT => Additional Stress)

- Moisture Warping Stress (Negative UM => Stress Reduction) (But Not Easy to Measure)
- Suggest to Include the Effect of Positive UT

MODIFIED PCA STRESS ANALYSIS & THICKNESS DESIGN PROCEDURES

- ILLI-SLAB F.E. Program
- Identification of Mechanistic Variables (Dimensionless)
-) Development of Stress Prediction Models
- Modified Equivalent Stress Calculation
- Modified PCA Fatigue Analysis & Thickness Design Procedures

ILLI-SLAB Program

- Originally Developed by Tabatabaie, 1977
- Continuously Revised by Wong, Conroyd, Ioannides, 1980-1985
- Included Curling Analysis by Korovesis, 1986-1989
- Re-Compiled by Lee, 1995 (Microsoft FORTRAN PowerStation)

Identification of Mechanistic Variables (Loading Only)

$$f\left(\begin{array}{c} \frac{1}{2} \frac{1}$$

Identification of Mechanistic Variables (Loading + Curling)

$$\frac{f}{E}, \frac{uh}{k^{2}}, \frac{qh}{k^{2}} =$$

$$f\left(\frac{a}{k}, r\Delta T, \frac{L}{k}, \frac{W}{k}, \frac{xh^{2}}{k^{2}}, \frac{Ph}{k^{4}}\right)$$

Development of Stress Prediction Models

- Factorial F.E. Runs Based on the Dimensionless Mechanistic Variables
- Two-Step Modeling Approach
 Projection Pursuit Regression (PPR)
 Piece-wise Linear Regression
- S-PLUS Statistical Package
- Lee & Darter (TRR 1449)

Modified Equivalent Stress Calculation (I)

$$f_{eq} = (f_w \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5
 + R_T \cdot f_c) \cdot f_3 \cdot f_4$$

Modified Equivalent Stress Calculation (II)

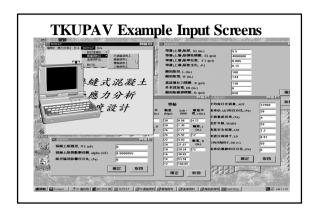
$$f_{W} = \frac{P}{h^{2}} \times f_{1}\left(\frac{a}{s}\right)$$

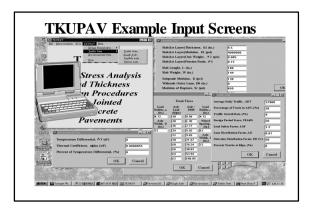
$$f_{c} = \frac{1}{2} E \Gamma \Delta T \times f_{2}\left(\frac{W}{s}\right)$$

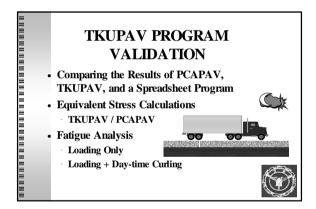
Modified Fatigue Analysis & Thickness Design Procedures

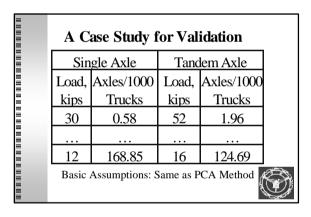
- Calculate Expected Load Repetitions (ni)

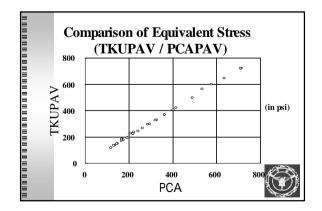
- Check Cumulated Fatigue Damage d1(ni/Ni) < 100%
- Repeat Previous Steps, If Necessary

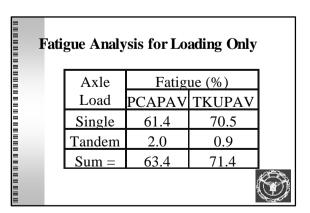



DEVELOPMENT OF TKUPAV PROGRAM


- Using Visual Basic Program (Ver. 4.0)
- · Highly User-Friendly Interfaces
- Basic Features of TKUPAV Program
 - Different Slab Size, Axle Configurations, Material Properties, Temperature Differentials
 - Metric and English Systems
 - English & Chinese Versions







Fatigue Analysis for Loading + Day-time Curling

Axle	TKUPAV Fatigue (%)		
Load	90% Load	10% Load +	Total
	Only	Curling	
Single	63.4	128.9	192.3
Tandem	0.8	9.8	10.7
Sum =	64.2	138.8	203.0
(*A			

CONCLUSIONS AND RECOMMENDATIONS (I)

- Modified PCA PEquivalent Stress Calculation & Fatigue Analysis
- Expanded PCA Thickness Design for:
 - Different Slab Size, Axle Configurations, Material Properties, Temperature Differentials
 - Metric and English Systems
- Developed a Highly User-Friendly TKUPAV Program

CONCLUSIONS AND RECOMMENDATIONS (II)

- Illustrated the Effect of Loading + Curling Should be Considered
- Night-time Curling May Be Included, If Desired (Lee & Darter, TRR 1449)
- Further Verifications & Trial Applications
- Other Features of TKUPAV Program: Edge, Corner, Interior Stress Analysis (To Be Published ...)

ACKNOWLEDGMENTS

- Research Sponsored by National Science Council, Taiwan, R.O.C. (NSC85-2211-E032-010)
- Special Thanks to Professor A. M. Ioannides
 & Professor M. I. Darter

THANKS FOR YOUR ATTENTION!

Y. H. Lee, J. H. Bair, C. T. Lee, S.T. Yen, Y. M. Lee Tamkang University Taiwan R.O.C.