

Research Approach

Reevaluate Pass-to-Coverage Ratio Concept

• Estimation of Edge Stress for Design

- Conversion of Different Aircraft Types and Departures
- Fatigue Relationship and Thickness Design Criteria
- Investigation of Tentative Modification Alternatives
- Determination of Equivalent Stress Factor
- Alternative Structural Deterioration Relationship

Conventional FAA Design Method

- The Plate Theory & Westergaard Edge Stresses
- Pass-to-Coverage Ratio (P/C)
- Design Aircraft & Conversion Factors
- Fatigue Relationship
 - Coverages & Basic Thickness

Aircraft Type	P/C Ratio	P/C Ratio	Aircraft Type	P/C Ratio	P/C Ratio
SINGLE WH-30		6.22	C-130	4.15	4.58
SINGLE WH-45	5.18	5.56	L-1011	3.62	3.40
SINGLE WH-60	5.10	5.20	A-300-B2	3.51	3.45
SINGLE WH-75		4.97	A-300-B4	3.45	3.57
DUAL WH-50		3.71	B-757	3.88	3.90
DUAL WH-75		3.57	B-767	3.9	3.89
DUAL WH-100	3.48	3.53	DC-10-10	3.64	3.80
DUAL WH-150		3.24	DC-10-30		3.54
DUAL WH-200		3.25	DC-10-30Belly	3.58	PC Ratio 4-58 3.40 3.45 3.57 3.90 3.89 3.80 3.54 2.88 3.54 2.88 3.54 2.88 3.54 4.21 4.21 3.97
DUAL TAN-100		4.55	B-747-200		3.53
DUAL TAN-200		3.73	B-747-SP	3.7	3.66
DUAL TAN-300	3.68	3.34	B-777-200A		4.21
DUAL TAN-400		3.14	B-777-200B	N/A	4.21
			B-777-200C		3.97

1

Full-size Test Data						
tigue Relationships dev	veloped	for C	0, C			
Tentative Fatigue Equations	SSE	R ²	Ν			
DF = 0.4561 + 0.2928*log(CO)	0.108	0.822	24			
DF = 0.3470 + 0.3013*log(CI)	0.125	0.818	36			
DF = 0.1760 + 0.3119*log(CF)	0.122	0.775	24			
DF = 0.3171 + 0.2894*log(PO)	0.114	0.804	24			
DF = 0.2124 + 0.2953*log(PI)	0.131	0.800	36			
	0.127	0.755	24			

Item	f3	Item	f3	Item	f3	Item	f3
A1.60	0.808	K2.100	0.859	U1.60	0.819	72	0.912
B2.661	0.826	N1.86	0.840	E-6	0.872	73	0.901
B1.66I	0.796	N2.86	0.809	M-1	0.873	1-C5	0.833
C2.665	0.826	O1.106	0.862	M-2	0.892	2-DT	0.873
C1.665	0.795	O2.106	0.830	-	0.810	3-DT	0.883
D1.66	0.796	P1.812	0.835	59	0.887	2-C5	0.834
E2.66N	0.835	P2.812	0.806	60	0.856	4-DT	0.865
E1.66M	0.806	Q1.102	0.865	61	0.873	3-200	0.892
F1.80	0.835	Q2.102	0.833	62	0.888	4-200	0.891
• (•A	Jucbili ssumi	mez and ng 1.27	l Yuce 3(π a ²)	(1995) = 1.6 (W_t) ²		Ì

Alternative Deterioration Relationsh						
Equivalent Design Factor ((EDF) =	S _c / (0.7	$5 * \sigma_e * f$			
Tentative Fatigue Equations	SSE	\mathbb{R}^2	N			
EDF = 0.6421 + 0.2920*log(CO)	0.119	0.793	24			
EDF = 0.5266 + 0.3037*log(CI)	0.136	0.792	36			
EDF = 0.3697 + 0.3086*log(CF)	0.134	0.735	24			
EDF = 0.5056 + 0.2879*log(PO)	0.125	0.771	24			
EDF = 0.3911 + 0.2976*log(PI)	0.142	0.774	36			
EDF = 0.2319 + 0.3032*log(PF)	0.140	0.712	2 85			

Implementation of the Proposed Approach

- Application of the P/C & CDF Concept
- Prediction Models for Critical Edge Stress
- Application of Equivalent Stress Factor (f_3)
- Alternative Fatigue Relationship

• On-going Development of a User-friendly Computer Program Using VB5.0

Conclusions (1) • Reexamined the P/C Concept • Proposed and Verified the Stress Prediction Models • Dimensionally Correct: Metric and English Systems • Other features: finite slab size, second layer, curling, etc. • Identified the Problems and Difficulties for the

- Conversions of Aircraft Types and Departures
- The CDF Concept Should Be Used
- Investigated Various Fatigue Relationships & Thickness Design Criteria

Conclusions (2)

- A scaling factor of 0.753 is applied to reduce the conservatism of the basic fatigue relationship in the current LEDFAA method
- Reanalyzed the Corps of Engineers traffic data
- \bullet Introduced an equivalent stress factor (f₃) & EDF
- \bullet f_3 factor decreases when tire width (W_t) increases
- Proposed an alternative fatigue relationship
- On-going Implementation of a User-Friendly PC Program

Acknowledgments

- Research work was sponsored by National Science Council, Taiwan, Republic of China
- Very Precious Literature and Comments by:
- Mr. Gordon F. Hayhoe, Galaxy Scientific Corporation
- Mr. Richard G. Ahlvin, US Army Corps of Engineers, Waterways Experiment Station

