
CORNER LOADING AND CURLING STRESS ANALYSIS OF CONCRETE
PAVEMENTS

Ying-Haur  Lee, Ying-Ming Lee, and Shao-Tang Yen
Department of Civil Engineering

Tamkang University
Taipei, Taiwan 251, R.O.C.

E-mail: yinghaur@tedns.te.tku.edu.tw.

ABSTRACT

Since corner breaks are one of the major structural distresses in jointed concrete pavements, this
research study focuses on the determination of the critical bending stresses at the corner of the slab due to
the individual and combination effects of wheel loading and thermal curling.  A well-known slab-on-
grade finite element program (ILLI-SLAB) was used for the analysis.  The structural response
characteristics of a slab corner were first investigated in this study.  Secondly, comparison of the actual
field measurements of the test sections of Taiwan’s North Second Freeway with the resulting ILLI-SLAB
stresses also showed fairly good agreements in its applicability for field stress estimation.  Based on the
principles of dimensional analysis, the dominating mechanistic variables were carefully identified and
verified.  The resulting ILLI-SLAB corner stresses were compared to theoretical Westergaard solutions.
Adjustment factors (R) were introduced to account for this discrepancy.  Prediction models were
developed as an alternative to the very time-consuming and complicated F.E. analysis to estimate stresses
for design purposes with sufficient accuracy.  A numerical example showing the use of the models was
also provided.

INTRODUCTION

Cracking of jointed concrete pavements (JCP) is often caused by three different critical repeated
loading positions: transverse joint, longitudinal joint midway between transverse joints, and at the corner.
Given certain design, construction, and loading conditions, any of these load positions could lead to
fatigue cracking of the slab over time.  "Load repetition combined with loss of suppor t and curling
stresses" are usually recognized as the main causes for corner breaks.  Thus, this paper mainly focuses on
the determination of critical bending stresses at the corner  due to loading and curling.

Two methods are often used to determine the stresses and deflections in concrete pavements: closed-
form formulas and finite element (F. E.) computer programs.  The  formulas originally developed by
Westergaard are for a single wheel load under the assumptions of infinite slab size and full contact
between the slab-subgrade interface.  To more accurately and realistically account for the effects of a
finite slab size and possible loss of subgrade support due to a temperature differential, F. E. analyses
should be used.  Nevertheless, the difficulties of the required run time and complexity often prevent it
from being used in practical pavement designs.

The main objective of this research work was to help develop an alternative stress determination
process which can be incorporated into existing mechanistic-based design procedures with sufficient
accuracy and efficiency for practical pavement designs.

CLOSED-FORM SOLUTIONS

Corner  Loading

In the analysis of a slab-on-grade pavement system, Westergaard has presented closed-form solutions
for three primary structural response variables, i.e., slab bending stress, slab deflection, and subgrade
stress, due to a single wheel load based on medium-thick plate theory.  Based on the assumptions of an
infinite or semi-infinite slab over a dense liquid foundation (Winkler foundation), Westergaard applied a
method of successive approximations and obtained the following equations for a circular corner loading
condition (1):
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Where σw is the critical corner stress, [FL-2]; δw is the critical corner deflection, [L]; P is the total
applied wheel load [F];  h is the thickness of the slab [L]; a is the radius of the applied load [L];
l = −[ / ( *( )* )]^ .Eh k3 212 1 025µ  is the radius of relative stiffness of the slab-subgrade system [L]; k is the
modulus of subgrade reaction [FL-3]; E  is the modulus of elasticity of the concrete slab [FL-2]; and µ is
the Poisson's ratio of the concrete.  Note that primary dimensions are represented by [F] for force and [L]
for length.  The distance to the point of maximum stress along the corner angle bisector was found to be
roughly:

X a a1 2 2 2 38= ≅l l. (Eq.2)
The above stress and deflection equations were derived using a simple approximate process and has

been debated and led to numerous revisions such as those proposed by Bradbury, Kelly, Teller and
Sutherland, Spangler, and Pickett over the years (2).  Despite this argument, Ioannides et al. (3) later has
indicated that the ILLI-SLAB F.E. results closely fall between those predicted by Westergaard and
Bradbury.  The ILLI-SLAB stresses are the minor  pr incipal (tensile) stresses occurring at the top fiber
of the slab corner.  Thus, Westergaard's approximation was still fairly good.

Thermal Curling

Considering curling stresses caused by a linear temperature differential on a concrete slab over a
dense liquid foundation, Westergaard (4) developed equations for three slab conditions (i.e., infinite,
semi-infinite, and an infinite long strip).  The interior stress for an infinite slab is:
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Where σ0 is the interior curling stress, [FL-2]; α is the thermal expansion coefficient, [T-1]; and ∆T is

the temperature differential through the slab thickness, [T].  Primary dimensions are represented by [F]
for force, [L] for length, and [T] for temperature.

Bradbury (5) later expanded Westergaard's bending stress solutions for a slab with finite dimensions
in both transverse and longitudinal directions.  The edge and interior curling stresses can be determined
by:
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Where σce , σci are the edge and interior curling stresses, [FL-2]; B is the finite slab width or length,

[L]; and C1 , C2 are curling stress coefficients for the desired and perpendicular directions.  However,
there exists no explicit closed-form corner stress solutions.

Loading Plus Thermal Cur ling

Considering the combined effect of loading plus curling, Bradbury further analyzed the curling stress
on a diagonal corner section located at or near the section at which the maximum loading stress occurs, i.e.
the location determined by (Eq.2).  Consequently, Bradbury derived the following approximate corner
curling stress:
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Where σct is the maximum curling stress to be combined with maximum stress induced by load at the

corner, [FL-2].  Even though Westergaard and Bradbury all suggested that this effect could be treated as "a
simple mater of addition" in most cases, many investigators have indicated that such an action may not
always be conservative (3, 6) due to the possible loss of subgrade support and violation of full contact
assumptions.

F.E. COMPUTER PROGRAM



The analysis of finite slab length and width effect was not possible until the introduction of finite
element models.  The basic tool for this analysis is the ILLI-SLAB F.E. computer program which was
originally developed in 1977 and has been continuously revised and expanded at the University of Illinois
over the years.  The ILLI-SLAB model is based on classical medium-thick plate theory, and employs the
4-noded 12-degree-of-freedom plate bending elements.  The Winkler foundation assumed by Westergaard
is modeled as a uniform, distributed subgrade through an equivalent mass foundation.  Curling analysis
was not implemented until versions after June 15, 1987.

The present version (March 15, 1989) (6) was successfully complied on available Unix-based
workstations of the Civil Engineering Department at Tamkang University.  With some modifications to
the original codes, a micro-computer version of the program was also developed using Microsoft
FORTRAN PowerStation (7).

CHARACTERISTICS OF CORNER STRESSES

The structural response characteristics of a slab subjected to the individual and combination effects of
a single-wheel corner load and a linear temperature differential were first investigated.  A preliminary
analysis under this study has also indicated that the location of the maximum combined stress due to
loading plus curling varies from case to case.  Thus, unlike the analysis of interior or edge stresses where
the maximum stresses occur in the same critical center or mid-slab location, the analysis of corner stresses
is probably the most difficult one among these three cases.  As illustrated in Figure 1 (a), the following
parameters were also assumed:

L/l = 7 W/l = 7 l = 41.86 in. h = 12 in.
k = 240 pci E = 5 Mpsi γ = 0.087pci µ = 0.15
Note that a/l = 0.1 and c = 7.5 in. were selected for the given single-wheel corner load and ∆Τ = -20

oF and α= 5.5E-06 /oF were chosen for the temperature differential.

Loading Only

Under this case study, a tire pressure (p) of 78 psi was selected and the loaded area was equal to
7.5*7.5 in.2.  The resulting maximum tensile stress was 63.7 psi, located at (x, y) = (22.3in., 22.3in.)
position.  This point is equivalent to a distance of 31.1 in. along the corner angle bisector.  According to
Westergaard’s equation (Eq.1), the corresponding maximum corner stress was 63.2 psi at a distance of
X1=31.7 in.   Thus, the ILLI-SLAB results agree with Westergaard’s solutions very well for this case.

Upward Curling Only

In this case, ∆Τ= -20 oF and α= 5.5E-06 /oF were assumed.  A more realistic assumption of partial
contact between the slab-subgrade interface was allowed and the self-weight of the concrete slab was also
considered.  For the night-time condition when the temperature on the top of the slab was less than the
bottom of the slab (or ∆Τ < 0), an upward curling was occurred.  Due to the slab’s self-weight, tensile
stresses occurred on the top and compressive stresses at the bottom of the slab.  It is worth mentioning,
however, that the maximum tensile stress (269.88 psi) occurred at the center of the slab rather than the
corner.

Large Loading Plus Small Cur ling

Just to illustrate the combination effect, a relatively large and hypothetical tire pressure of p = 780 psi
together with the same temperature differential were assumed in this case.  Since nighttime (negative
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(a) Case Study of Corner Stress Analysis
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Figure 1 - Distribution of the Tensile Stresses on the Top of the Slab



∆Τ) curling condition will result in additional tensile stress at the top fiber of the slab, this study is only
limited to the most critical case of corner loading plus night-time curling.  The resulting maximum tensile
stress was 683.73 psi, located at (x, y) = (4 in., 40 in.) position, which is equivalent to a distance of 40.2
in. along the corner angle bisector.  This result is approximately equal to the sum of 10 times of the stress
due to the loading-only case (p = 78 psi) and the tensile stress at the specified point due to curling alone.

Small Loading Plus Large Cur ling

This case assumes a tire pressure of p = 78 psi together with the same negative linear temperature
differential. The resulting maximum tensile stress was 290.4 psi, located at (139 in., 139 in.) which is
equivalent to a distance of X1 = 196.6 in. along the diagonal line.  In fact, it was very close to the center
of the slab and the magnitude of the stress was approximately equal to the sum of both individual effects
at that point.

Medium Loading Plus Medium Cur ling

This case assumes a tire pressure of p = 203 psi such that the resulting loading-only stress will have
about the same magnitude as the aforementioned curling-only effect.  The resulting maximum combined
tensile stress was 306.2 psi, located at (120 in., 120 in.).  This critical stress location was far away from
the point of X1 = 31.7 in. as determined by Westergaard’s equation.  The resulting maximum tensile stress
was less than the summation of both individual effects using the principle of superposition.

Location of the Maximum Combined Stresses

The individual and combined stress contour plots of all cases were shown in Figure 1 (b) - (f),
respectively.  In summary, if the temperature differential is relatively small combined with a large corner
load, the critical stress location is very close to Westergaard's maximum load stress location (Eq.2).
However, if the temperature differential is very large along with a very small corner load, the critical
stress location may shift toward and up to the center of the slab.  For the combined effects of medium
loading and medium curling, the maximum stress location falls between them.  Thus, the location of the
maximum combined stresses due to loading plus curling will fall within the Westergaard’s location and
the center of the slab along the corner angle bisector as shown in Figure 2.  Furthermore, the corner stress
along the line of a 1/4 circle centered at the very corner of the slab also shows about the same magnitude
at most locations.  This may help to explain the mechanism of the development of corner breaks as well.

Center of the Slab

Location of Max. Combined
Tensile Stress on Top

Westergaard's Max.
Load Stress Location, X1

Figure 2 - Expected Maximum Combined Stress Location

Research continues with special attentions to this different critical stress location problem.
Consequently, necessary modifications were made to the existing ILLI-SLAB codes to facilitate the
search of critical stresses and locations alone the corner angle bisector or the diagonal nodes up to the
center of the slab for the remaining analyses.

RESULTS OF ACTUAL FIELD MEASUREMENTS



To further investigate the applicability of the ILLI-SLAB F. E. program for stress estimation, the
actual field measurements of the test sections of Taiwan’s North Second Freeway (8) was obtained.  The
test sections were constructed as jointed concrete pavements (as illustrated in Figure 3) with an unbonded
lean concrete base and  the following characteristics:  (Note: 1 in. = 2.54 cm, 1 psi = 0.07 kg/cm2, 1 pci =
0.028 kg/cm3, 1 kip = 454 kg)
1. finite slab size: 3-lane (one direction), L = 188 in., W = 148 in.
2. thickness of the top and the bottom layers: h1 = 10 in., h2 = 6 in.
3. concrete modulus of the top and the bottom layers: E1 = 4.03E+06 psi, E2 = 1.97E+06 psi
4. Poisson’s ratio of the top and the bottom layers: µ1 = µ2 = 0.20
5. self-weight of the top and the bottom slabs: γ1 = γ2 = 0.085 pci
6. modulus of subgrade reaction: k = 481 pci
7. longitudinal joints: tied bars, spacing = 24 in., diameter = 5/8 in., Poisson’s ratio = 0.2, elastic

modulus = 2.9E+07 psi.
8. transverse joints: dowel bars, spacing = 12 in., diameter = 1.25 in., Poisson’s ratio = 0.2, elastic

modulus = 2.9E+07 psi, width of joint opening = 0.236 in., aggregate interlock factor (AGG) =
1000 psi, dowel concrete interaction (DCI) = 1.9E+06 lbs/in. (assumed).

9. with an AC outer shoulder.
A fully loaded truck with three different levels (60.7, 43.1, and 34.3 kips) of rear dual-tandem axle

loads was placed near the slab corner.  The gear configuration with the size of loaded area, wheel spacing
and axle spacing was shown in Figure 3.  At the time of testing, a positive temperature differential ∆T =
10.8 oF was measured across the slab thickness; the slab thermal coefficient α was assumed 5.5E-06 /oF.

The resulting horizontal stresses estimated by the ILLI-SLAB F. E. program were compared to the
actual measured stresses near the slab corner and summarized in Table 1.  Note that since the sensor
locations C70 = (176.2 in., 11.8 in.), C71=(176.2 in., 74 in.), and C72=(176.2 in., 136.2 in.) was actually
placed 2 in. below the slab surface, the resulting ILLI-SLAB stresses (compressive x-stress) were linearly
adjusted (or reduced by 40%) while making such  comparisons.  As shown in Figure 4, fairly good
agreements were achieved.

IDENTIFICATION OF DIMENSIONLESS MECHANISTIC VARIABLES

When there exist no closed-form solutions for the selected theoretical analysis tools or when
analyzing most empirical but practical engineering problems, the use of the principles of dimensional
analysis is often guaranteed. The principles of dimensional analysis treat a theoretical equation in non-
dimensional form, which is comprised by a set of many dimensionless parameters representing a concise
interrelationship among any complicated combinations of all input variables with dimensions.   Thus, the
number of parameters and data analysis time and costs may be reduced dramatically.  This approach has
also been widely accepted for engineering research.

Through the use of the principles of dimensional analysis, earlier investigators (9) have demonstrated
that theoretical Westergaard solutions and F.E. solutions for three primary structural responses due to a
single wheel load can be concisely defined by the following expression for a constant Poisson's ratio
(usually µ ≈ 0.15):
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Where σ, q are slab bending stress and vertical subgrade stress, respectively, [FL-2];  δ is the slab
deflection, [L]; f1 is a function of a/l, L/l, and W/l; and L, W are finite slab length and width, [L].  Also
Note that variables in both sides of the expression are all dimensionless.  The dependent variables are σ
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Figure 3 - A Case Study for Validation

Table 1 - Comparison of Measured versus ILLI-SLAB Estimated Stresses

C 70 C 71 C 72
Axle load

(kips)
Measured

(psi)
ILLI-SLAB

(psi)
Measured

(psi)
ILLI-SLAB

(psi)
Measured

(psi)
ILLI-SLAB

(psi)
60.7 36.5 24.1 74.3 66.1 94.3 92.9
43.1 37.2 23.6 62.9 55.4 67.0 73.0
34.3 37.5 23.3 47.0 49.8 45.7 62.7

Figure 4 - Comparison Results of the Estimated versus Measured Stresses



h2/P, δkl2/P and ql2/P, which are only dominated by the normalized load radius (a/l), and the normalized
slab length and width (L/l and W/l) rather than the other input parameters, such as E, h,  k, a, etc.

Furthermore, according to recent research by Lee and Darter (9) for the stress analysis at the very
edge of the slab, concise relationships have been proposed and numerically validated through a series of
F.E. runs.  The dimensionless mechanistic variables due to the effects of thermal curling alone and
loading plus curling for a constant Poisson's ratio are:
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Where γ is the unit weight of the concrete slab, [FL-3]; and f2 , f3 are functions for curling alone and

curling plus loading, respectively.  Also note that Dγ was defined as the relative deflection stiffness due to
self-weight of the concrete slab and the possible loss of subgrade support, whereas Dp was the relative
deflection stiffness due to the external wheel load and the loss of subgrade support.  Conceptually, the
above relationship should be applicable to any given loading conditions.

To numerically validate the above relationships for the individual and combined corner stresses due
to loading and thermal curling in this study, several series of factorial F.E. runs were performed.  For the
case of loading only, 30 ILLI-SLAB runs as shown in Table 2 with the ranges for the dominating
variables a/l = 0.05 ~ 0.3, L/l and W/l = 2 ~ 7 were conducted.  Table 3 shows the other 20 different F.E.
runs for the validation of loading plus curling.  The data ranges are L/l, W/l = 2.6 ~ 15.5, a/l = 0.12 ~
0.3, Dp = 5E-05 ~ 62.5E-05, Dγ = 2.7E-05 ~ 27E-05, and α∆Τ = -22E-05 ~ 20.4E-05.  While keeping the
dominating mechanistic variables constant but changing any other individual input variables to different
values, the F.E. results have indicated  that the aforementioned relationships also hold for the corner
condition as expected.

CORNER STRESS PREDICTION MODELS

A series of F. E. factorial runs were performed based on the dominating mechanistic variables identified.
Several BASIC programs were written to automatically generate the F. E. input files and summarize the
desired outputs.  The F. E. mesh was generated according to the guidelines established in earlier studies
(2).  As proposed by Lee and Darter (10), the projection pursuit regression (PPR) introduced by Friedman
and Stuetzle (11) was used for the development of the following three stress prediction models.  This
algorithm is available in the S-PLUS statistical package (12).
1. CASE I (Loading only): Full contact assumption was applied, no temperature differential existed,

and the self-weight of the slab was neglected.
2. CASE II (Loading plus curling, but ∆T = 0): Partial contact between the slab-subgrade interface

was allowed.  Although the temperature differential was set to zero, the self-weight of the slab
was considered in this case.

3. CASE III (Loading plus curling, but ∆T < 0): A more general case for loading plus curling.
Partial contact was allowed, and both the temperature differential and the slab’s self-weight
were considered.

The stress prediction models were represented in the form of adjustment factors (R), which were
specially chosen to satisfy theoretical boundary conditions.  As a result, R values range from 0 to 1, or at
most up to an approximate maximum value of 1.2 for all three cases, which may also help to control the
prediction accuracy.



Table 2 - Identification of Dimensionless Variables for Loading Only

W/l L/l a/l c a P l L W E k h σ σh2/P
in. in. psi in. in. in. Mpsi pci in. psi

2 2 0.3 5 2.821 2500 9.4 18.81 18.81 5 200 1.54 1061.7 1.007
2 2 0.3 5 2.821 2500 9.4 18.81 18.81 4 300 1.9 697.544 1.007
2 2 0.3 10 5.642 10000 18.81 37.61 37.61 3 400 5.81 294.72 0.995
2 2 0.3 10 5.642 10000 18.81 37.61 37.61 2 500 7.16 194.04 0.995
2 2 0.3 10 5.642 10000 18.81 37.61 37.61 1 650 9.84 102.73 0.995
3 3 0.3 5 2.821 2500 9.4 28.21 28.21 5 200 1.54 1377.62 1.307
3 3 0.3 5 2.821 2500 9.4 28.21 28.21 4 300 1.9 905.17 1.307
3 3 0.3 10 5.642 10000 18.81 56.42 56.42 3 400 5.81 379.52 1.281
3 3 0.3 10 5.642 10000 18.81 56.42 56.42 2 500 7.16 249.85 1.281
3 3 0.3 10 5.642 10000 18.81 56.42 56.42 1 650 9.84 132.26 1.281
4 4 0.1 5 2.821 2500 28.21 112.84 112.84 5 200 6.67 120.52 2.145
4 4 0.1 5 2.821 2500 28.21 112.84 112.84 4 300 8.23 79.17 2.145
4 4 0.1 10 5.642 10000 56.42 225.68 225.68 3 400 25.12 33.962 2.143
4 4 0.1 10 5.642 10000 56.42 225.68 225.68 2 500 30.97 22.343 2.143
4 4 0.1 10 5.642 10000 56.42 225.68 225.68 1 650 42.59 11.814 2.143
5 5 0.05 5 2.821 2500 56.42 282.09 282.09 5 200 16.81 21.748 2.458
5 5 0.05 5 2.821 2500 56.42 282.09 282.09 4 300 20.73 14.301 2.458
5 5 0.05 10 5.642 10000 112.84 564.19 564.19 3 400 63.29 6.135 2.457
5 5 0.05 10 5.642 10000 112.84 564.19 564.19 2 500 78.05 4.034 2.457
5 5 0.05 10 5.642 10000 112.84 564.19 564.19 1 650 107.32 2.134 2.458
6 6 0.3 5 2.821 2500 9.4 56.42 56.42 5 200 1.54 1464.98 1.390
6 6 0.3 5 2.821 2500 9.4 56.42 56.42 4 300 1.9 962.65 1.390
6 6 0.3 10 5.642 10000 18.81 112.84 112.84 3 400 5.81 401.49 1.355
6 6 0.3 10 5.642 10000 18.81 112.84 112.84 2 500 7.16 264.288 1.355
6 6 0.3 10 5.642 10000 18.81 112.84 112.84 1 650 9.84 139.894 1.355
4 7 0.2 5 2.821 2500 14.1 98.73 56.42 5 200 2.65 605.929 1.702
4 7 0.2 5 2.821 2500 14.1 98.73 56.42 4 300 3.27 398.03 1.702
4 7 0.2 10 5.642 10000 28.21 197.47 112.84 3 400 9.97 170.557 1.695
4 7 0.2 10 5.642 10000 28.21 197.47 112.84 2 500 12.29 112.229 1.695
4 7 0.2 10 5.642 10000 28.21 197.47 112.84 1 650 16.9 59.352 1.695

Note: While keeping W/l, L/l, and a/l constant, the resulting σh2/P values still remain
constant for any arbitrary combinations of all other parameters.



Table 3 - Identification of Dimensionless Variables for Loading Plus Curling

W/l L/l a/l c P l L W E k h Dγ Dp ∆Τ γ σ σ/E
in. psi in. in. in. Mpsi pci in. x10-5 x10-5 oF pci psi x10-6

2.6 5.5 0.12 2.5 469 11.75 64.65 30.56 5.3 200 2.04 7 25 -10 0.466 269.888 50.92
2.6 5.5 0.12 5 3608 23.51 129.29 61.12 4.2 300 6.35 7 25 -10 0.288 217.459 51.78
2.6 5.5 0.12 7.5 12126 35.26 193.94 91.68 3.5 400 12.75 7 25 -10 0.214 182.401 52.11
2.6 5.5 0.12 10 25559 47.02 258.59 122.24 2.1 500 23.9 7 25 -10 0.135 109.768 52.27
4.6 15.5 0.2 2.5 158 7.05 109.31 32.44 5.3 200 1.03 12 33 -40 1.124 666.448 125.74
4.6 15.5 0.2 5 1220 14.1 218.62 64.88 4.2 300 3.21 12 33 -40 0.694 527.171 125.52
4.6 15.5 0.2 7.5 4099 21.16 327.93 97.32 3.5 400 6.45 12 33 -40 0.516 439.146 125.47
4.6 15.5 0.12 10 33738 47.02 728.74 216.27 2.1 500 23.9 12 33 -40 0.232 263.277 125.37
5.6 5.6 0.3 2.5 8 4.7 26.33 26.33 5.3 200 0.6 27 5 0 3.313 29.53 5.57
5.6 5.6 0.3 5 63 9.4 52.66 52.66 4.2 300 1.87 27 5 0 2.046 23.928 5.70
5.6 5.6 0.3 7.5 211 14.1 78.99 78.99 3.5 400 3.76 27 5 0 1.522 20.098 5.74
5.6 5.6 0.3 10 444 18.81 105.32 105.32 2.1 500 7.04 27 5 0 0.963 12.124 5.77

12.6 5.5 0.15 2.5 646 9.4 51.72 118.48 5.3 200 1.51 5 62.5 14 0.386 500.999 94.53
12.6 5.5 0.15 5 4975 18.81 103.43 236.96 4.2 300 4.71 5 62.5 14 0.239 401.07 95.49
12.6 5.5 0.15 7.5 16720 28.21 155.15 355.44 3.5 400 9.47 5 62.5 14 0.178 334.697 95.63
12.6 5.5 0.15 10 35242 37.61 206.87 473.92 2.1 500 17.75 5 62.5 14 0.112 200.969 95.70
2.6 4.5 0.23 2.5 165 6.13 27.6 15.94 5.3 200 0.86 2.7 50 37 0.278 257.668 48.62
2.6 4.5 0.23 5 1273 12.26 55.19 31.89 4.2 300 2.67 2.7 50 37 0.171 212.862 50.68
2.6 4.5 0.23 7.5 4278 18.4 82.79 47.83 3.5 400 5.36 2.7 50 37 0.127 179.184 51.20
2.6 4.5 0.23 10 9018 24.53 110.38 63.78 2.1 500 10.04 2.7 50 37 0.081 108.762 51.79

Note: While keeping W/l, L/l, a/l, α∆T, Dp, and D� constant, the resulting σ/E values still remain
about the same for any arbitrary combinations of all other parameters. (α = 5.5Ε−06 /oF)

CASE I:  Loading Only

In CASE I, a single wheel load was applied at the slab corner alone.  There was no thermal curling effect
and the Westergaard’s full subgrade support was assumed in this case.  Based on previous investigation
(3), Westergaard's infinite slab assumption may be achieved if the normalized slab length (L/l) is equal to
5.0 or more.  Thus, a more conservative value of 7.0 for both L/l and W/l  was selected to ensure infinite
slab condition.  The following factorial F.E. runs were conducted:

a/l: 0.05, 0.1, 0.2, 0.3;    L/l: 2, 3, 4, 5, 6, 7;    W/l: 2, 3, 4, 5, 6, 7 (L/l ≧ W/l)
Since L/l and W/l are analogous, a total of 84 runs were only necessary if slab length was chosen to

be greater than slab width.  The resulting maximum corner stresses were obtained and compared to the
Westergaard solution.  The following prediction model was developed for the adjustment factor (R):
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Statistics and Limits:
 N = 84,  R = 0.980,  SEE =  0.0081,  CV = 0.79%,2 0 05 03 2 7. / . , / , / /≤ ≤ ≤ ≤ ≤a L W Ll l l l

Note that N is the number of data points, R2 is the coefficient of determination, SEE  is the standard
error of estimates, and CV is the coefficient of variation.  This prediction model is also applicable to a
larger slab when the upper bound value of 7.0 is used for the normalized slab length or width (L/l, W/l).



CASE II:  Loading Plus Cur ling, but ∆T=0

In CASE II, the combination effect of a single wheel load and a linear temperature differential (∆T) at the
slab corner was considered.  But, ∆T was assumed to be zero or  very close to zero.  Therefore, the
ILLI-SLAB program was modeled to allow partial contact between the slab-subgrade interface.  Since a
complete full factorial of all the six dimensionless parameters which requires a tremendous amount of
computer time is not feasible.  Thus, the following factorial F.E. runs were conducted:

a/l: 0.05, 0.1, 0.2, 0.3;  L/l: 2, 3, 4, 5, 7, 9, 11, 13, 15;  W/l ＝ L/l;  α∆T=0
Notice that a square slab up to a maximum normalized slab length (L/l) of 15, which may satisfy

Westergaard's infinite slab assumption for thermal curling analysis.  Furthermore, to account for Dγ and
DP  effects without increasing the number of F.E. runs, the above factorial runs were randomized by these
two factors for different a/l values using the concept of experimental design.  The corresponding values
are given below:

a/l   ( , ) ( , )*DG DP D Dp= γ 105

0.05 (1, 2)  (10, 30)  (7, 130)
0.10 (4, 30)  (7, 70)  (4, 130)
0.20 (4, 2)  (7, 30)  (10, 70)
0.30 (1, 2)  (10, 70)  (1, 130)

After conducting considerable amounts of PPR trials, the following predictive model was developed
for the corner stress adjustment factor (R):

( )R = = 0.9949 + 0.17037 +  0.03020

-0.85525  +15.53557(A1) +  1.71139(A1)    if    (A1 0.1)
0.24816  +  0.28387(A1) -  0.06692(A1)       if     (A1 > 0.1)
-0.93998  +  3.72027(A2) + 11.13839(A2)    if     (A2 0.18)
-2.93892  +16.93742(A2)                               if     (A2 0.18)

A1 = - 0.95810x1+   0.03604x2 +  0.28368x3 - 0.00231x4 - 0.00033x5 
          - 0.00236x6 - 0.00144x7 + 0.01621x8
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Statistics and Limits:
N = 108,  R = 0.962,  SEE = 0.0096,
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CASE III:  Loading Plus Cur ling, but ∆T<0

CASE II and CASE III all consider the combination effect of a single wheel load and a linear temperature
differential (∆T) at the slab corner.  However , ∆T was assumed to be different from zero in CASE III.
Therefore, other than ∆T was selected differently, the aforementioned factorial design of F.E. runs for
CASE II was also adopted for this case.  The ∆T values was selected as follows:

∆T: -10, -20, -30, -40 oF   (α=5.5E-06 /oF)
Thus, a total of 432 factorial F.E. runs were conducted for this analysis.  The following adjustment

factor (R) was carefully selected to account for the theoretical difference between CASE II and
Westergaard’s interior curling stress solutions:

( ) ( )R i i

o

=
−σ σ

σ
  CASE III   CASE II

  or ( ) ( )σ σ σi i oR  CASE III   CASE II= + × (Eq.10)



Where σi is the combined maximum F.E. corner stress, [FL-2]; and σ0 is defined by (Eq.3).  By using
the PPR algorithm, the following predictive model for R was developed:
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VALIDATION OF STRESS PREDICTIONS

To further validate the applicability of the proposed prediction models for all three cases, a totally
separate set of database was created using the following input parameters: E = 3.0, 5.5, 8.0 Mpsi; k = 50,
250, 500 pci; L =120, 240, 360 in.; h = 8, 12, 16 in.; ∆Τ = 0, -20, -30, -40oF (α = 5.5E-06 /oF).  Note that
the other pertinent input parameters are: c = 10 in., a = 5.642 in., P = 9000 lbs, p = 90 psi,
µ = 0.15, γ = 0.087 pci, and W = L.
This will result in a total of 81 ILLI-SLAB runs with the ranges of a/l = 0.07 ~ 0.21, L/l and W/l = 1.4 ~
15.9 for Case I and Case II, and a total of 243 ILLI-SLAB runs for Case III.  When the values are outside
the specified limits of the prediction model, the upper or lower bounds were applied for the analysis.  The
predicted stresses were plotted against the resulting ILLI-SLAB corner stresses (13) as shown in Figure 5
(a) - (c), respectively.  Apparently, almost perfect agreement of the stress predictions for Case I and Case
II, and fairly good agreement for Case III were achieved. Thus, the applicability of the prediction models
were further verified.

There exists, however, some minor discrepancy for Case III due to the fact that the critical
location of minor principal stress changes from case to case.  Thus, the location of critical stress
occurrence  should be further investigated for future improvement.



(a) Loading Only

(b) Loading Plus Curling, but ∆T=0

(c) Loading Plus Curling, but ∆T<0

Figure 5 - Validation of Corner Stress Predictions



A NUMERICAL EXAMPLE

Consider a pavement slab with the following characteristics: E = 3 Mpsi, k = 400 pci, L = 141 in., W =
141 in., h = 9.97 in., γ= 0.224 pci, μ = 0.15, and α= 5.5E-06 /oF.  A single wheel load of 7,624 lbs
with a loaded rectangle of the size of 10x10 in2 is applied at the slab corner.  A linear temperature
differential of -10 oF (night-time curling) exists through the slab.  Determine the critical corner stresses
due to loading alone, and loading plus curling.  (Note: 1 psi = 6.89 kPa, 1 pci = 0.27 MN/m3,  1 in. = 2.54
cm, 1 oF = (F - 32) / 1.8 oC, 1 lb = 4.45 N.)

The equivalent radius of the loaded area is a = 5.64 in. and the radius of relative stiffness of the slab-
subgrade system is l = 28.21 in.  Therefore, the dimensionless mechanistic variables are a/l = 0.2, L/l =
W/l = 5, ADT = 5.5, DG = 7, and DP = 30.  The Westergaard solutions are σw = 122.3 psi and σ0 = 97.1
psi for loading and curling alone using (Eq.1) and (Eq.3).

For the case of loading only, the adjustment factor R = 1.054 using (Eq.8).  Thus, the corner stress
determined by the proposed model is 1.062 x 122.3 = 129.9 psi.  (Note that the actual ILLI-SLAB stress
was 129.1 psi.)

For the case of loading plus curling, the adjustment factors for Case II and Case III are R = 1.054 and
0.139 using (Eq.9) and (Eq.11), respectively.  Thus, the predicted total corner stress determined by the
proposed model is 1.054 * 122.3 + 0.139 * 97.1 = 142.4 psi using (Eq.10).  (Note that the actual ILLI-
SLAB corner stress was 147.5 psi for this case.)

CONCLUSIONS

The corner stress of a concrete slab due to the individual and combination effects of loading and night-
time curling was conducted under this study.  A linear temperature differential across the slab thickness
and a dense liquid foundation were assumed. The structural response characteristics of a slab corner were
first investigated in this study.  Secondly, comparison of the actual field measurements of the test sections
of Taiwan’s North Second Freeway with the resulting ILLI-SLAB stresses also showed fairly good
agreements in its applicability for field stress estimation.

Based on the principles of dimensional analysis, six dimensionless mechanistic variables which
dominate the primary structural responses were used for the analysis.  A new modeling procedure was
utilized to develop stress prediction models.  The prediction models were properly formulated to satisfy
applicable engineering boundary conditions.  The models not only cover almost all practical ranges of
pavement designs, but they are also dimensionally correct.  These models can be implemented as a part of
a design procedure to the very time-consuming and complicated F.E. analysis to estimate stresses for
design purposes with efficiency and sufficient accuracy.  A numerical example showing the use of the
models was also provided.
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