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ABSTRACT
This study focused on the development of an alternative stress estimation procedure to

instantly calculate the critical stresses of jointed concrete pavements.  Thus, the primary
components for stress analysis including gear configurations, total wheel load, tire pressure, a
widened outer lane, a tied concrete shoulder, and thermal curling due to a linear temperature
differential have to be considered.  The well-known ILLI-SLAB finite element program was
used for the analysis.  The program's applicability for stress estimation was further validated by
reproducing very favorable .results to the test sections of the Taiwan's North Second Highway.
With the incorporation of the principles of dimensional analysis and experimental design, a series
of finite element factorial runs over a wide range of pavement designs was carefully selected and
conducted.  Consequently, prediction equations for stress adjustments were developed using a
modern regression technique (Projection Pursuit Regression).  Subsequently, a simplified stress
analysis procedure was proposed and implemented in a user-friendly computer program
(TKUPAV) to facilitate instant stress estimations.  Together with PCA's cumulative fatigue
damage equation, a modified PCA stress analysis and thickness design procedure was also
proposed and incorporated into the TKUPAV program.  This computer program will not only
instantly perform critical stress calculations, but it may also be utilized for various structural
analyses and designs of jointed concrete pavements.

INTRODUCTION
Traditionally, the Westergaard’s closed-form stress solutions for a single wheel load acting

on the three critical loading conditions (interior, edge, and corner) were often used in various
design procedures of jointed concrete pavements.  However, the actual pavement conditions are
often different from Westergaard’s ideal assumptions of infinite or semi-infinite slab size and full
contact between the slab-subgrade interface.  Besides, the effects of different gear
configurations, a widened outer lane, a tied concrete shoulder, a second bonded or unbonded
layer may result in very different stress responses from the Westergaard’s solutions.  These
effects may be more accurately and realistically accounted through the use of a finite element
(F.E.) computer program.  Nevertheless, the difficulties of the required run time, the complexity
of F.E. analysis, and the possibility of obtaining incorrect results due to the improper use of the
F.E. model often prevent it from being used in practical pavement design.  Thus, the main
objectives of this study were to develop an alternative procedure to more conveniently calculate
                                                
1 Associate Professor, Dept. of Civil Engr., Tamkang University, E725, #151 Ying-Chuan Rd., Tamsui, Taipei,

Taiwan 251, R.O.C., TEL: (886-2) 623-2408, FAX: 620-9747, E-mail: yinghaur@tedns.te.tku.edu.tw.
2 Graduate Research Assistant, Department of Civil Engineering, Tamkang University, Taiwan, R.O.C.



the critical stresses of jointed concrete pavements with sufficient accuracy for design purposes
[1].

WESTERGAARD’S CLOSED-FORM SOLUTIONS
In the analysis of a slab-on-grade pavement system, Westergaard has presented closed-form

solutions for three primary structural response variables, i.e., slab bending stress, slab deflection,
and subgrade stress, due to a single wheel load based on medium-thick plate theory and the
assumptions of an infinite or semi-infinite slab over a dense liquid (Winkler) foundation [2].

ILLI-SLAB FINITE ELEMENT SOLUTIONS
The basic tool for this analysis is the ILLI-SLAB F.E. computer program which was

originally developed in 1977 and has been continuously revised and expanded at the University
of Illinois over the years.  The ILLI-SLAB model is based on classical medium-thick plate
theory, and employs the 4-noded 12-degree-of-freedom plate bending elements.  The Winkler
foundation assumed by Westergaard is modeled as a uniform, distributed subgrade through an
equivalent mass foundation.  Curling analysis was not implemented until versions after June 15,
1987.  The present version (March 15, 1989) [3] was successfully complied on available Unix-
based workstations of the Civil Engineering Department at Tamkang University.  With some
modifications to the original codes, a micro-computer version of the program was also developed
using Microsoft FORTRAN PowerStation [4].

RESULTS OF ACTUAL FIELD MEASUREMENTS
To further investigate the applicability of the ILLI-SLAB F. E. program for stress

estimation, the actual field measurements of the test sections of Taiwan’s North Second Highway
[5] was obtained.  The test sections were constructed as jointed concrete pavements with an
unbonded lean concrete base and the following characteristics:  (Note: 1 in. = 2.54 cm, 1 psi =
0.07 kg/cm2, 1 pci = 0.028 kg/cm3, 1 kip = 454 kg)

1. finite slab size: 3-lane (one direction), L = 188 in., W = 148 in.
2. thickness of the top and the bottom layers: h1 = 10 in., h2 = 6 in.
3. concrete modulus of the top and the bottom layers: E1 = 4.03E+06 psi, E2 = 1.97E+06 psi
4. Poisson’s ratio of the top and the bottom layers: µ1 = µ2 = 0.20
5. self-weight of the top and the bottom slabs: γ1 = γ2 = 0.085 pci
6. modulus of subgrade reaction: k = 481 pci
7. longitudinal joints: tied bars, spacing = 24 in., diameter = 5/8 in., Poisson’s ratio = 0.2,

elastic modulus = 2.9E+07 psi.
8. transverse joints: dowel bars, spacing = 12 in., diameter = 1.25 in., Poisson’s ratio = 0.2,

elastic modulus = 2.9E+07 psi, width of joint opening = 0.236 in., aggregate interlock
factor (AGG) = 1000 psi, dowel concrete interaction (DCI) = 1.9E+06 lbs/in. (assumed).

9. with an AC outer shoulder.

A fully loaded truck with three different levels (60.7, 43.1, and 34.3 kips) of rear dual-



tandem axle loads was placed near the slab corner.  The gear configuration with the size of
loaded area, wheel spacing and axle spacing was shown in Figure 1.  At the time of testing, a
positive temperature differential ∆T = 10.8 oF was measured across the slab thickness; the slab
thermal coefficient α was assumed 5.5E-06 /oF.  The resulting horizontal stresses estimated by
the ILLI-SLAB program were compared to the actual measured stresses and summarized as
follows:

C 70 C 71 C 72
Axle
load

(kips)

Measured
(psi)

ILLI-SLAB
(psi)

Measured
(psi)

ILLI-SLAB
(psi)

Measured
(psi)

ILLI-SLAB
(psi)

60.7 36.5 24.1 74.3 66.1 94.3 92.9
43.1 37.2 23.6 62.9 55.4 67.0 73.0
34.3 37.5 23.3 47.0 49.8 45.7 62.7

Note that since the sensor locations C70 = (176.2 in., 11.8 in.), C71=(176.2 in., 74 in.), and
C72=(176.2 in., 136.2 in.) was actually placed 2 in. below the slab surface, the resulting ILLI-
SLAB stresses (compressive x-stress) were linearly adjusted (or reduced by 40%) while making
such  comparisons.  Apparently, fairly good agreements were achieved.

IDENTIFICATION OF MECHANISTIC VARIABLES
In reality, jointed concrete pavements consist of many single finite concrete slabs jointed

by aggregate interlock, dowel bars, or tie bars.  As shown in Figure 2, traffic loading may be in
forms of dual wheel, tandem axle, or tridem axle.  A widened outer lane may also shift the
wheel loading away from Westergaard’s critical loading locations.  A tied concrete shoulder, a
second bonded or unbonded layer may also result in different degrees of stress reductions.  To
account for these effects under loading only condition, the following relationship has been
identified through many intensive F.E. studies for a constant Poisson's ratio (usually µ ≈ 0.15)
[1, 6]:
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Where σ, q are slab bending stress and vertical subgrade stress, respectively, [FL-2];  δ is
the slab deflection, [L]; P = wheel load, [F]; a = the radius of the applied load, [L];
l=(E*h3/(12*(1-µ2)*K))0.25 is the radius of relative stiffness of the slab-subgrade system [L]; k =
modulus of subgrade reaction, [FL-3]; L, W = length and width of the finite slab, [L]; s =
transverse wheel spacing, [L]; t = longitudinal axle spacing, [L]; D0 = offset distance between the
outer face of the wheel and the slab edge, [L]; AGG = aggregate interlock factor, [FL-2]; hefft =
(h1

2 + h2
2 * (E2*h2)/(E1*h1))0.5  is the effective thickness of two unbonded layers, [L]; h1 , h2  =

thickness of the top slab, and the bottom slab, [L]; and E1 , E2  = concrete modulus of the top slab,
and the bottom slab, [FL-2]. Note that variables in both sides of the expression are all
dimensionless and primary dimensions are represented by [F] for force and [L] for length.



Since no thermal curling effect was considered in the above relationship, the full contact
assumption between the slab-subgrade interface and the principle of superposition may be
applied to the analyses.  Thus, the above relationship can be broken down to a series of simple
analyses for each individual effect.  The adjustment factors can be separately developed to
account for the effect of stress reduction due to each different loading condition.

Furthermore, the following concise relationship has been identified by Lee and Darter [7]
for the effects of loading plus thermal curling:
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Where α is the thermal expansion coefficient, [T-1]; ∆T is the temperature differential
through the slab thickness, [T]; γ is the unit weight of the concrete slab, [FL-3]; Dγ=γ*h2/(k*l2);
and DP=P*h/(k*l4).  Also note that Dγ was defined as the relative deflection stiffness due to
self-weight of the concrete slab and the possible loss of subgrade support, whereas Dp was the
relative deflection stiffness due to the external wheel load and the loss of subgrade support.  The
primary dimension for temperature is represented by [T].

DEVELOPMENT OF STRESS PREDICTION MODELS
A series of F. E. factorial runs were performed based on the dominating mechanistic

variables (dimensionless) identified.  Several BASIC programs were written to automatically
generate the F. E. input files and summarize the desired outputs.  The F. E. mesh was generated
according to the guidelines established in earlier studies [8].  As proposed by Lee and Darter [9],
a two-step modeling approach using the projection pursuit regression (PPR) technique introduced
by Friedman and Stuetzle was utilized for the development of prediction models.  Through the
use of local smoothing techniques, the PPR attempts to model a multi-dimensional response
surface as a sum of several nonparametric functions of projections of the explanatory variables.
The projected terms are essentially two-dimensional curves which can be graphically represented,
easily visualized, and properly formulated.  Piece-wise linear or nonlinear regression techniques
were then used to obtain the parameter estimates for the specified functional forms of the
predictive models.  This algorithm is available in the S-PLUS statistical package [10].

Proposed Edge Stress Prediction Models

To account for the effects of different material properties, finite slab sizes, gear
configurations, and environmental effects (e.g., temperature differentials), the following equation
was proposed for edge stress estimations [1, 7]:
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Where:
σe = edge stress prediction, [FL-2];
σw = Westergaard’s closed-form edge stress solution, [FL-2];
σc = Westergaard/Bradbury’s curling stress, [FL-2];
E = elastic modulus of the slab, [FL-2];
h = slab thickness, [L];
C = the curling stress coefficient (λ = W/((80.5)*l));
R1= adjustment factor for different gear configurations including dual-wheel, tandem axle,

and tridem axle;
R2 = adjustment factor for finite slab length and width;
R3 = adjustment factor for a tied concrete shoulder;
R4 = adjustment factor for a widened outer lane;
R5 = adjustment factor for a bonded/unbonded second layer; and
RT = adjustment factor for the combined effect of loading plus day-time curling.

The proposed prediction models for edge stress adjustments are given in Table 1.  More
detailed descriptions of the development process can be found in Reference [1].

Proposed Corner  / Inter ior  Stress Prediction Models

Similar approach was adopted to develop separate prediction models for corner / interior
stress adjustments. More detailed information was given in References [1, 11, 12, 13, 14].

TKUPAV PROGRAM DEVELOPMENT
The research findings were incorporated into a window-based computer program

(TKUPAV), which was developed using the Microsoft Visual Basic software package [15], to
instantly perform critical stress estimations.  The TKUPAV program was designed to be highly
user-friendly and thus came with many well-organized graphical interfaces, selection menus, and
command buttons for easy use.  Together with PCA’s cumulative fatigue damage equation, a
modified PCA stress analysis and thickness design procedure was also implemented in the
TKUPAV program for practical trial applications.  Both English and Chinese versions of the
program are available.  An example input screen of the program was shown in Figure 3.

CONCLUSIONS AND RECOMMENDATIONS



An alternative procedure for the determination of the critical stresses of jointed concrete
pavements was developed under this study.  The effects of a finite slab size, different gear
configurations, a widened outer lane, a tied concrete shoulder, a second bonded or unbonded
layer, and thermal curling due to a linear temperature differential were considered.  The ILLI-
SLAB program's applicability for stress estimation was further validated by reproducing very
favorable results to the test sections of the Taiwan's North Second Highway.  Based on the
dimensionless mechanistic variables identified, prediction equations for stress adjustments were
developed using a modern regression technique (Projection Pursuit Regression).  Subsequently,
a simplified stress analysis procedure was proposed and implemented in a user-friendly computer
program (TKUPAV) to facilitate instant stress estimations.  Together with PCA's cumulative
fatigue damage equation, a modified PCA stress analysis and thickness design procedure was
also incorporated in the TKUPAV program.  This computer program will not only instantly
perform critical stress calculations, but it may also be utilized for various analyses and designs of
concrete pavements.
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Table 1  Proposed Prediction Models for Edge Stress Adjustments
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Table 1 Proposed Prediction Models for Edge Stress Adjustments (Continue ...)
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14.535 - 20.351(A2) +   5.986(A2)    if  A2 1.2   
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Use the above unbonded prediction model to calculate R5

(Same as
above)

Load plus
Day-time
Curling

( ) ( ) ( )

( )

( )

( )

 R = 0.94825 +  0.15054 A1 +  0.03724 A2 + 0.03395 A3

A1 =
-2.5575 + 0.8003 (A1)    - 0.8003(A1)   if  A1 3
-2.6338 + 1.1038(A1)    - 0.0914(A1)   if 3 < A1 7
0.7564 - 0.0155(A1)     if   A1 7

ATX2
-0.6788 + 0.0.8003(A2)    - 0.8003(A2)   if  A2 3
3.7674 - 2.297(A2)   + 0.2963(A2)   if 3 < A2 7
-7.0337 + 1.2945(A2)     if   A2 7

ATX3
4.0843 + 4.8241 (A3)      if  A3 3
0.1815 + 0.0541(A3)    -
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1.0899(A3)   if - 1 < A3
0.0453 + 0.0383(A3)     if   A3

 ATX1 = -0.04724X1 + 0.56954 * X2 - 0.08408X3 + 0.20033X4 - 0.26647X5 + 0.00375X6 + 0.73881X7
-0.01142X8 + 0.0953X9 + 0.01121X10
ATX2 = 0.03869X1 + 0.35781X2 + 0.09078X3 - 0.04054X4 + 0.86388X5 + 0.01635X6 - 0.31246X7
+0.00552X8 - 0.12677X9 - 0.01765X10
ATX3 =  0.58567X1 + 0.25804X2 + 0.14784X3 + 0.14984X4 + 0.12743X5 - 0.05012X6 + 0.72295X7
-0.0131X8 - 0.01304X9 - 0.06591X10
X = x1, x2, x3,...., x10
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