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Study of Rigid Pavement Deflections Using 3-D Finite Element
Analysis '
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ABSTRACT: In-depth parameter studies on the critical deflections of rigid pavements using
3.D ABAQUS finite element analysis were conducted. A systematic analytical approach was
utilized to study the effects of mesh fineness and element selection. For all three loading -
conditions analyzed, the resulting deflections ‘are generally in the following descending order:
ABAQUS 3-D solid elements, 3-D shell elements, ILLI-SLAB element, and Westergaard
solutions. Several guidelines in mesh fineness and element selection were developed and
recommended.
The deflection convergence characteristics of 8-node and 9-node elements are more effective
than 4-node elements. Generally speaking, with the exception of C3D8, C3D8R, and C3D27R
elements, the deflections of all 3-D shell and 3-D solid elements tend to increase to ‘
convergence when a finer horizontal and or vertical mesh is used. By increasjng horizontal
and vertical mesh fineness, the resulting deflections of 8-node solid elements are very close to
20-node and 27-node elements. Note that the vertical mesh fineness was defined as the
number of evenly divided slab layers for simplicity and practical model building concern in,
this study. Using vertical mesh fineness of one (or 1-layer) was proved inadequate and should
be avoided for 3-D solid elements. | o R
Based on the principli:s of dimensional analysis, an additional dimensionless variable (h/a)
was identified and verified to have a substantial influence on ABAQUS runs using both 3-D
shell and 3-D solid elements. Separate 3-D FEM deflection databases were developed using
all dimensionless variables. A tentative maximum interior deflection predictive model was
developed for future possible applications. '

KEY WORDS: R1g1d pavemént, 3-D finite element analyéis, deflection, convergence;
backcalculation.



1. INTRODUCTION

Nondestructive deflection testing (NDT) devices have been widely adopted to obtain surface
deflection data in order to evaluate existing pavement conditions using backcalculation
procedures. Closed-form backcalculation procedures and graphical solutions for concrete
pavements with a single slab layer (loannides et al., 1989; loannides, 1990; Li et al., 1996;
Fwa et al., 1998) are currently available. Li et al. (1997, 1998) further proposed a
backcalculation algorithm for infinitely large rigid pavements with two slab layers through the
use of an equivalent single slab layer based on the concept of equivalent flexural rigidity.
Crovetti (1994) further indicated that finite slab size, the locations of loading plate (interior,
edge and corner of the slab), and the presence of adjacent slabs or a tied concrete shoulder
may all affect pavement surface deflections. Based on the principles of dimensional analysis,
Lee et al. (1997, 1998) further proposed a modified deflection ratio procedure for the
backcalculation of concrete pavements using various NDT devices for three different loading
plate locations using 2-D FEM analysis. -~ - L TS BT

Extensive re-backcalculation of general pavement study (GPS) test sections of the long term
pavement performance (LTPP) program (FHWA, 1997) was not very successful. Particularly,
extreme difficulties in interpreting in situ deflection measurements of rigid pavements has
been encountered using multi-layered elastic backcalculation programs, probably due to the
effects of temperature curling, moisture warping and loss of subgrade support. Lee and Sheu

(Lee & Sheu, 2001) further investigated the effects of adjacent slabs and temperature curling
on rigid pavement deflections using the plate theory approach and the two-dimensional (2-D,

ILLISLAB) finite element progr

sm. Many factorial finite element runs have been carefully -

selected and conducted to obtain generalized deflection databases. Prediction models for
deflection adjustment factors were developed to facilitate the analysis of more practical rigid
pavement backcalculation problems. ' ' ~ SR '
With the introduction of three-dimensional (3-D, ABAQUS) FEM (Hibbitt et al., 2000) and
all the promising features and results reported in the literature (Kuo, 1994; Brill, 1998;
Hammons, 1998; Kim & Hjelmstad, 2000; Thompson & Navneet, 1999), its applications on
pavement engineering become inevitable. Nevertheless, due to the its required running-time
and complexity, 3-D FEM analysis cannot be easily implemented as a part of pavement
structural evaluation procedure. Thus, the main objective of this study is to conduct in-depth

studies on the critical deflections of rigid pavements using 3-D FEM analysis (W, 2003).

2. CLOSED-FORM SOLUTIONS AND FINITE ELEMENT IDEALIZATIQNS ‘
Based on the assumption of an infinite or semi-infinite slab ovér a Winkler foundation,

Westergaard obtained the following closed-form solutions subj ected to a single edge, interior,
and corner wheel load (Lee & Sheu, 2001):
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Where Sy, Sy, and S, are the Westergaard’s maximum edge, interior, and corner deflections,
respectively, [L]; P is the single whee] load, [F]; & is the thickness of the slab, [L]; a is the

radius of the applied load, [L]; £=(E*h3/(12%(1-p2)*k))** is the radius of relative stiffness of
the slab-subgrade system [L]; k is the modulus of subgrade reaction, [FL; E is the concrete
modulus of the slab, [FL™]; 4 is the Poisson’s ratio. Note that primary dimension for force is
represented by {F], and length is represented by [L]. - ‘ ' ‘

The analysis of finite slab length and width was not possible until the introduction of finite
element models (FEM). The well-known ILLI-SLAB (2-D) and ABAQUS (3-D) FEM were
selected for this study (Korovesis, 1990; Hibbitt et al., 2000; Lee & Sheu, 2001). A brief
summary of the characteristics of the ILLI-SLAB finite element, 3-D shell and solid elements
from the ABAQUS library considered in this study is available (Kuo, 1994; Hammons, 1998;
Wu, 2003). These include both linear and quadratic elements employing both full and reduced
integration. The number of nodes, the degree of freedom, and the number of Gauss integration
points per element indicating their relative complexity and required computation time are also
summarized. Two types of thin shell elements (4-node, 8-node, and 9-node) are considered:
those satisfy the thin shell theory (the Kirchhoff constraint) analytically and those converge to

thin shell theory numerically as the thickness decreases. The selected 3-D solid (brick) '
elements (8-node, 20-node, and 21~27-node) include first-order (linear) and second-order
(quadratic) interpolation elements. Second-order elements provide higher accuracy than first-
order elements and are very effective in bending-dominated problems. =~ -

The element types S4 and S4R are general-purpose shells. The S4RS5, S8R5, and S9RS shell

elements, which impose the Kirchhoff constraint numerically, aré iritended for the analysis of
thin shells, whereas the element type S8R should be used only for thick shells. Element type
C3D20 has 27 integration points, while C3D20R has only 8 integration points. The C3D27
and C3D27R elements are variable node elements, of which the number of iodes can be
reduced to 21 (or any number between 21 and 27) per element by removing the interior node

from each of the faces of the element as desired. Reduced integration reduces the computation
time through the use of a lower-order integration to form the élement stiffness. Generally
speaking, the accuracy achieved with full versus reduced integration first-order elements is
largely dependent on the nature of the problem, For second-order elements, reduced-
integration elements generally yield more accurate results than the corresponding fully

integrated elements (Hibb_itt et al., 2000; Hamrribns, 1998).

3, PARAMETER ANALYSIS AND MODEL BUILDING

A single slab resting on a Winkler foundation with three critical loading conditions was
considered, though the results of interior loading will be presented in this paper primarily. To
study the effects of mesh fineness and element selection on the results of FEM runs, a
systematic analytical approach was utilized and implemented in a Visual Basic software
package to concuct the analyzes. Several guidelines in mesh fineness and the selection of
various element types are subsequently developed.

3.1 Definition of mesh fineness and mesh generation

Mesh generation in the horizontal direction generally follows the following steps: the
consideration of applicable symmetry option, generation of finer mesh at the loaded area
(Zone I) and at its neighborhood area (Zone II), and progressively increasing to coarser mesh
further away (Zone III) for efficiency consideration. Horizontal mesh fineness is defined as




the ratio of the length of the loaded area to the selected element length throughout this study.
In addition, Zone I and Zone I was chosen to have the same mesh fineness, whereas the mesh
of Zone III was decided as 4 times coarser than Zone I according to previous literature. The
length of neighborhood area (nC) will be further investigated, though it was usually selected
as 2 times the length of the loaded area (C). Although there are some controversies regarding
the mesh generation in the vertical direction (Kuo, 1994; Hammons, 1998; Toannides, 1984),

vast amount of computer resources are required if a certain aspect ratio in the vertical ’
direction, e.g., less than 0.8, is chosen especially for a small wheel load area and/or small

horizontal mesh length. Thus, it was decided that vertical mesh fineness be defined as the

number of evenly divided layers for practical model building concern in this study.

3.2 Deflection convergence characteristics

A singlé finite slab 'restihg ona Wiﬁklef foundation under three loading (edge, interior,
corner) conditions with the following input parameters: finite slab length L=5.00m (197 in.),

slab width W=5.00m (197in.), E=8.27GPa (1.2Mpsi), h=21.6cm (8.5in.), k=27MN/m’

(100pci), tire pressure p=620kPa (90psi), p=0.15, P=10kN (2,250lbs) was chosen for the
horizontal mesh fineness study. According to the principles of dimensional analysis, this is
equivalent to a pavement having a/£0.1, L/#7, W/ £=7, and h/a=3 to be discussed later. For
higher accuracy consideration, same horizontal mesh fineness of up to 10 for Zone I and Zone
II was considered, in which the length of Zone II was set to 8 times the length of the loaded |

area (C). The slab thickness was subdivided into up to 4 sub-layers for vertical mesh fineness .

study. The deflection convergence characteristics of various FEM element types were ., .
investigated. For all three loading conditions analyzed, the resulting deflections are generally
in the following descending order: ABAQUS 3-D solid elements, 3-D shell elements, ILLI-
SLAB element, and Westergaard solutions. . B
Figure 1 depicts the interior deflection convergence characteristics of 3-D shell elements. In
which, deflection ratio is defined as the ratio of the resulting FEM deflections to the .
corresponding Westergaard solutions given in equation (1). Horizontal mesh fineness ranges
from 1 to 10. The element types S8R, S8R5, and S9RS resulted in very close deflection
solutions. Generally speaking, the deflections of all 3-D shell elements tend to increase to
convergence when a finer horizontal mesh is used. For 4-node shell elements, the deflections
are in the following order: S4R5<S4<84R when coarser mesh was used. The convergence
characteristics of 8-node and 9-node elements are more effective than 4-node elements; and

their Geflections are generally slightly higher than 4-node element’s deflections.



Element
1 s4

© 2 s84R

S - 3 54RS

-~ 4 S8R
g 5 s8RS
8 o 6§  S8RS
E G 7 LLISLAB
g -
z [tk P S e P e T
8 3]

1.02
:

1 2 3 4 5 6 7 8 ] 10

Mesh Fineness

Figure 1: Interior Deflection Convergence Characteristics (3-D Shell Elements)

Figure 2 displays the interior deflection convergence characteristics of 3-D solid elements.
Deflection ratio and horizontal mesh fineness are defined the same as before. The vertical
mesh fineness within each plot is defined to evenly divide the slab thickness into one to four
sub-layers. Using vertical mesh fineness of one (or 1-layer) was proved inadequate and should
be avoided for 3-D solid elements (Wu, 2003). Especially for the C3D8R elements, the
resulting deflection ratios are very different from those for the other 3-D solid elements
regardless of increasing horizontal mesh fineness when vertical mesh fineness is set to one.
By increasing horizontal and vertical mesh fineness, the resulting deflections of 8-node solid
clements are very close to 20-node and 27-node elements. Generally speaking, the deflections
of all 3-D solid elements tend to increase to convergence when a finer horizontal mesh is
used. Nevertheless, the deflections of C3D20, C3D20R, and C3D27 tend to increase to
convergence whereas the deflections of C3D8, C3D8R, and C3D27R tend to decrease to
convergence for finer vertical mesh, i.e., sub-divided into more layers. The execution time of
20-point elements is approximate 60% of that of 27-point elements. To achieve high accuracy
and computation efficiency, it was recommended that element types C3D20 or C3D27 with a
horizontal mesh fineness of 3 and a vertical mesh fineness of 3 be selected for further
analysis.
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Figure 2: Interior Deflection Convergence Characteristics (3-D Solid Elements) "
L
3.3 Convergence characteristics due to different slab thicknesses and load sizes o

To investigate the effects of different slab thicknesses and load sizes to deflection
convergence characteristics, a single finite slab resting on a Winkler foundation under three &
loading (edge, interior, corner) conditions with the following eight different sets of
dominating parameters was chosen: Wa=2, 4; and a/£0.05, 0.1, 0.2, 0.3. Element type
C3D?27 was chosen for the remaining analyses hereafter. v
The effects of horizontal mesh fineness (up to 5) to the convergence characteristics of three !
loading conditions were subsequently investigated, in which vertical mesh fineness was set to
3 (Wu, 2003). Similarly, the effects of vertical mesh fineness (up to 5-layer) to deflection
convergence characteristics were also investigated, where horizontal mesh fineness was set to




3. Similar deflection convergence characteristics were observed. The deflections increase to
convergence when finer hotizontal mesh or finer vertical mesh is used for all three loading
cases. The deflections of a pavement with smaller slab thlckness and load size (smaller hWa
and a/4) converge faster. '

The effect of vertical mesh fineness to deﬂectlon convergence is hlgher than that of horizontal
mesh fineness, The thicker the pavement (larger 4/a), the higher vertical mesh fineness or
more layers are recommended to achieve convergence. On the other hand, simply using
vertical mesh fineness of one (or 1-layer) in some earlier literature was proved to be
inadequate. The recommendation of selecting a horizontal mesh fineness of 3 and a vertical
mesh fineness of 3 is adequate to achieve good convergence and computation efficiency.

34 Deterrrﬁnation of the length of neighbbrhdod area |

The length of neighborhood area (nC) selected for finer horizontal mesh was further
investigated; in which n ranging from 1 to 8 was selected to study its effects on the results of

FEM computation accuracy. The same pavement-loading system having a/£=0.1, L/#7,

W/£=7, and Wa=3 was re-analyzed. All the aforementioned element types with a horizontal
mesh fineness of 3 and a vertical mesh fineness of 3 were analyzed. The resulting deflections
of any mesh fineness were compared to the corresponding ones with the finest mesh.

The deflections of ILLI-SLAB and 4-node shell elements were affected by the length of Zone -
I1. However, the resulting deflections of 8-node and 9-node shell elements were identical
when nC is greater than or equal to 2 times the 1ength of the loaded area C. When nC is
greater than or equal to 3 times C; the differences in the resulting deflection ratio of 3-D shell
elements due to the selection of nC are negligible or up to 0.3%. Regardless of different nC
values selected, the resulting deflection ratios of 20-node and 27-node solid elements are
identical or almost identical due to the length selection of the neighborhood area and thus are
not shown in separate plots for 3-D solid elements (Wu, 2003). Therefore, a value of 3 times
C is recommended for all element types for consistency and conservative consideration.

4. IDENTIFICATION OF ADDiTIONAL DIMENSIONLESS VARIABLE

According to Idaﬁmdes & Salsilh-Murua (1989), the fbllowing relationship has been
identified and verified through many 2-D FEM studies for a constant Poisson’s ratio: !

51:122 f(aLW) “ L . o o
P 270t _

Extreme difficulties were encountered while using only these three dimensionless variables
for 3-D FEM analyses. Based on the principles of dimensional analysis, in addition to the
normalized load radius (a/4), the normalized finite slab length (L/4), and the normalized finite
slab width (W/4), an additional dommatmg dimensionless variable (h/a) defined as the ratio of
slab thickness (%) and load radius (@) was subsequently identified. The following relationship
can account for the theoretical differences of various 3-D shell and 3-D solid elements:

ke fa LW h
-A222.4 | ®
P M
This relatlonshlp was numerically verified with a series of factorial runs using the selected
element type C3D27 and all the 3-D shell elements under three loading cases (interior, edge,




and corner). While keeping the above four dimensionless. variables constant and changing any
other input parameters (a, b, £ L, W, E, k, P), the resulting dimensionless 3-D FEM

deflections (5kf/P) remained constant. Some results for interior loading analysis with
excellent agreements are summarized in Table 1 and Table 2.

5. DEVELOPMENT OF DATABASES AND PREDICTION MODELS

An automated analysis program was developed using the Visual Basic software package
(Microsoft, 1998) to automatically construct FEM models, generate the input files, conduct
the runs, as well as summarize the results. This program was also capable of assisting in
conducting all the aforementioned analyses through the selection of different loading
locations, various 3-D shell and solid elements, horizontal and vertical mesh fineness, and the
length of the Zone II. :

A series of 3-D FEM factorial runs was conducted for a single slab resting on a Winkler
foundation with three critical loading conditions based on the following dimensionless
parameters: L74=2~7 (step by 1); w/é=2,3,4,5,6,7 (step by 1); a/£=0.05, 0.1~0.5 (step by
0.1); and /a=0.5~6 (step by 0.5). These rangeés were carefully selected to cover a very wide
range of highway and airfield rigid pavement conditions. Separate deflection databases were
created using element type C3D27 with a horizontal mesh fineness of 3, a vertical mesh
fineness of 3, and the same finer mesh extended to 3 times the length of loaded area (C). -
Since the resulting deflection ratios defined as the ratio of 3-D FEM results to Westergaard
solutions always have a value greater than one, the reciprocal of the deflection iatios (R) or
adjustment factor ranges from 0 to 1 will satisfy the following concise relationship:

R=——t—— =‘5‘”‘='/(3,£,E’-,ﬁ ) @
- Deflection Ratio  83p L°¢ { a o ‘ - _

In which, 8, and 83p represent the Westergaérd deflections and 3-D FEM deflections, [L].
The 3-D FEM deflections are always higher than the Westergaard solutions. The very high
deflection ratios (or very small Rs) occurred when a thicker pavement (larger #/a) or a larger
load size (larger a/¢) was analyzed. Since Westergaard’s deflection is very small for thicker
pavements or larger load sizes (larger Wa and a/¢), the resulting 3.D FEM deflections can be
several times of the theoretical solutions due to possible compression across the'slab
thickness. . S P T S g ,

Table 1: Identification of Dimensionless Variables (Interior Loading, C3D27 Element)

h/a ' Lt w/e c 8 [ ¢ L w E 3 p P o 3 ohr2/P  5ekenaP
em cm m cm o m GPs  MN/m"3 _kPa kN kPa M
15 0.2 2 T2 127 72 10.7 358 - - 0.72 072 - 1378 88.1 - 4823 78 7519  0.1924 - 11160 02811
1.5 0.2 L2 ‘2 19.1 10.7 16.1 537 107 1071034 441 6201 225 9660 04947 11156 02810
5 02 2 2 19.1 107 161 537 107 1.07 13.78 587 5512 20,0,  BS8S 03298 . 11154 02810
1.5 0.2 2 2 25.4 14.3 218 77 143 1.43 24.12 771 689.0 445 1073.5 03141 L1159 02810
1.5 0.2 2 2 254 14.3 218 NI 143 143 3101 9.1 1033.5 668 16102 03665 11159 02810
1.5 02 2 2. 318 179 26.9 89.6 L7 179 2067 529 8957 504 13952 05955 11157 02810
1.5 0.2 2 2 N8 179 68 86 LI LTI 2786 05 4l3d 41.7 6441 02063 11159 02810
1.5 0.2 2 2 38.1 218 322 . 1075 215 . 215 13.78 204 8268 1202 (2884 09854 11I60 0.2810
1.5 02 2 2 LT R 21.8 323 1075 2187 205 T 4134 881 6201 903 9660 02474 11156 02810
1.5 0.2 2 2 38.1 215 322 1005 . 215 215, .. 2756 .. S87 6890 . 1001 10735 04123 11158 0.2810
6.0 0.2 4 4 127 7.2 43.0 368 14377 143 1378 56399 4823 78 374 00056 08811 05256
6.0 0.2 4 4 19.1 10.7 64.5 537 215 2.15 1034 28200  620.1 22.5 477 00145 08812 05256
6.0 02 4 4 191 10.7 64.5 537 215 215 13.78 37600 5512 20.0 424 00096 038812 05256
6.0 0.2 4 4 254 143 86.0 nT 287 2.87 2412 49349 6890 445 53,0 ©0092 08810 05256
6.0 0.2 4 4 25.4 14.3 86.0 917 287 2.87 3101 63449 10335 66.8 794 00107 08808 0.5256
6.0 0.2 4 4 318 179 1075 896 358 3.58 20,67 33840 8957 90.4 68.9 00174 08811 05256
6.0 0.2 4 4 318 179 1025 896  3.38 3.58 27.56 45120 4134 417 318 00060 08812 05256
6.0 0.2 4 4 38.1 215 1290 1075 430 430 1378 18800 8268 1202 63.6 00289 0.880% 05256
6.0 02 4 4 38.1 218 {200 107.5 430 430 4134 56399 620 90.1 477 00072 08810 05256
6.0 0.2 4 4 381 215 1290 1075 430 4.30 27.56_ 37600 685.0 1001 530 00120 08810 05256

P TRIre




Table 2: Identification of Dimensionless Variables (Interior Loading, 3-D Shell Elements)

Number  hfa o/t L2 wie c a, h ¢ L w E k p P

' cm cm cm cm m m GPa ___ MN/m*3 _kPa kN
1 6.0 0.1 5 5 254 1433 8598 1433 3.58 358 31666 405 6201 4005
1 2 6.0 0.1 5 5 50.8 2866 17197 2866 YA YRR BY) 84471. 540 6201 160.20
| 3 60 0.1 5 ] 254 1433  BSOB 1433 3.58 358 84471 1080 6201 4005
| 4 4.0 0.1 5 5 127 11 2866 77 179 179 178107 1350 6201 1001
5 4.0 0.1 5 5 127 117 2866 7.7 179 179 142485 1080 6201 1001
| 6 40 0.1 3 3 254 1433 5732 1433 358 358 427436 1620 6201 4005
i 7 05 .01 5 5 12.7 117 358 LT L79  L79 27360190 405 6201 100!
l 8 0.5 0.1 5 5 127 .17 358 7.7 179 L79 27360190 405 6201 1001
9 .05 0.1 5 b 254 1433 717 1433 3,58 3.58 255343400 189.0 _ 620.1 4005
‘ 10 6.0 0.4 5 5 381 21307 12897 537 134 134 00186 405 6201, 90.11
;( 1 6.0 0.4 5 5 102 5.73 343 143 036 036 00049 405 6201 64!
{ 12 6.0 0.4 5 3 1.6 430 2379 107 027 027 00223 2430 6201 _ 3.60
13 40 0.4 5 5 254 1433 5132 358 090 090 02226 2160 6201 4005
14 4.0 0.4 5 5 203 1147 4586 287 072 072 - 0033 405 6201 2563
t 15 40 0.4 S b} 229 1290 5159 322 081 081 00376 . 405 :620.1 3244
i 16 0.5 0.4 5 5 254 1433 717 358 050 090 284970 540 6201 4005
17 0.5 0.4 5 5 29 1290 645 322 081 081 192369 405 6201 324
, 18 0.5 0.4 ] 3 254 1433 717 . 35.8 090 090 213728 405 6201 4005

é Number RPBi2 34 SAR S4RS SER S8R5 S9R5

Delection . .. », Delection Delection "4 Delection Delection . Delection anm Delection o o
() sken2P (mm) 8ker2/P (mm) sker2lp (tmm). 8ker2/p (mm) 8ker2/p (mm). 8ker/p (mm) 8kerP
) I 00660 0.1378 00826 01726 00826 01726 00824 0.1721 00826 0.1725 00826 0.1725 00826 0.1725
2 00495 0.1378 00620 01726 00620 0.726 00618 0172 “0.0619 0.1725 0.0619 : 0.1725  0.0619 - 0.1725
. 3 00247 01378 00310 01726 00310 01726 00309 0.1721 00310 0.1725 0.0310 . 01725 00310 - 0.1725
400198 0.1378 00220 0.1533 00220 01533 0020 01531 00220 0.1534 0.0220 0.1534 0.0220 0.1534
. 5 00247 01378 00275 01533 00275 01533 00275 0.531 00275 01534 0.0275 01534 00275 01534
6 - 00165 01377 00184 01533 00184 0.1534 00183 01531 00184 01534 0.0184 01534 00184 0.1534
it 700660 0.1378 00661 0.1380 00661 01380 . 0.0661 01380 0.0661 0.1381 0.0661. 0.1381 0.0661 0.1381
8 00660 0.1378 00661 01380 00661 01380 00661 0.1380 00661 0.1381 0.0661 0.1381 00661 0.1381
) 9 00141 01379 00141 01379 00142 Olwwww_w
) 1010035 0.1310 26899 03511 - 2.6899. 03511 26518 03462 26670 03481 . 26670 0.3481 26670 03481
. 11 10035 01310 26899, 03511 26899, 03511 26518 03462 . 26670 03482 26670 03482  2.6670 0.3482
12 01673 01310 04484 03512 04485  0.3512 04419 03461 04445 03481 04445 03481 04445 03481
) 13 0.1882 0.1310° 03427 02386 03428 02387 (3392 02362 03411 02375 03411 02375 03411 02375
14 10035 01310 - 18278 02386 ~1.8284 . 0.2387  1.8089 02361 1.81%0 0.2375 1.8191.-0.2375  1.8191 0.2375
" 15 10035 01310 18277 02386 - 18284 02387 _ 18089 02361 18190 0.2374 1,8191 02375 18191 02375

1607526 01310 07601 01323 072607 01324 07603 01323 07628 0.1328 07627 0.1328 07627 0.1328
17 10034 04310 10135 01323 10142 01324 10136 01323 10170 0.1328 1.0169° 01327 1.0169 0.1327
18 10035 04310 10135 01323 10143 01324 10137 01323 10171 0.1328 10170 0.1328  1.0170 0.1328

To facilitate the future possibléiappl‘icatiohs of these databases, the follovsﬁrig predictive
model was developed for maximum interior deflection estimation using projection pursuit
regression technique (Lee & Darter, 1994; Friedman & Stuetzle, 1981): -




R=0.57628 +0.29988 @, +0.03984 @,
_ 1.15062 +3.59112(A1) +1.41207(A1)® +0.16542(A1)*  if (AD)<0
. {1.00125 +1.81296(A1)-2.35892(A1)% - 6.28127 (A1)*  if (A1)>0
_ [-14.76436 +25.89010(A2) - 13.77861(A2) +2.28462(A2)°  if (A2)<2
2 { 0.85184-9.06245(A2) +3.28991(A2)? -0.36233(A2)>  if (A2)>2

A1 = 0.57228x1 +0.02624x2 - 0.02631x3 - 0.81921x4 ©)
A2 = -0.64426x1 + 0.18742x2 +0.04724x3 + 0.73998x4
X= [xl,x2,x3,x4]'==v[-q-,-li,—h-,-lz *f’-]

£ aa !

Limits :O.{?S_<_a/€S0.5,0.5Sh/aSG.O,3SL/ZSS-,W/£=L/£
Statistics : N = 432, R2 = 0.9954, SEE = 0.02022

In which, N stands for the number of observations; R2 is the coefficient of determination; SEE
is the standard error of the estimation. Note that the effect of finite slab width is similar to that
of finite slab length. For simplification, the finite slab width is set to equal to the finite slab
length and thus is excluded from this analysis. ~ IR

6. CONCLUSIONS AND RECOI\/II\'/IENDATIONS

In-depth parameter studies on the critical deflections of rigid pavements using 3-D ABAQUS
finite element analysis were conducted. A systematic analytical approach was utilized and
implemented in a Visual Basic software package to automatically conduct the analyses for
consistency and efficiency consideration. For all three loading conditions analyzed, the
resulfing deflections are generally in the following descending order: ABAQUS 3-D solid
elements, 3-D shell elements, ILLI-SLAB element, and Westergaard solutions.

The deflection convergence characteristics of 8-node and 9-node elements are more effective
than 4-node elements. Generally speaking, with the exception of C3D8, C3D8R, and C3D27R
elements, the deflections of all 3-D shell and solid elements tend to increase to convergence
when a finer horizontal and or vertical mesh is used. By increasing horizontal and vertical
mesh fineness, the resulting deflections of 8-node solid elements are very close to 20-node
and 27-node elements. Using vertical mesh fineness of one (or 1-layer) was proved
inadequate and should be avoided for 3-D solid elements. Especially for the C3D8R elements,
the resulting deflection ratios are very different from those for the other 3-D solid elements
regardless of increasing horizontal mesh fineness when vertical mesh fineness is set to one.
The vertical mesh fineness was defined as the number of evenly divided slab layers for
simplicity and practical model building concern in this study. To achieve high accuracy and
computation efficiency, the selection of element types C3D20 or C3D27 with a horizontal
mesh fineness of 3 and a vertical mesh fineness of 3 may be adequate. :
Similar conclusions were reached for mesh fineness and element selection study using
different slab thicknesses (#/a) and load sizes (/8. The deflections of ILLI-SLAB and 4-
node elements were affected by the length of neighborhood area (Zone IT) whereas the
differences in deflections due to the selection of nC are limited or negligible for 3-D shell and
3-D solid elements. Thus, a value of 3 times C was recommended for all element types for
consistency and conservative consideration.
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An additional dominating dimensionless variable (/a) defined as the ratio of slab thickness
(h) and load radius (a) was identified and verified to have a substantial influence on
ABAQUS runs using both 3-D shell and 3-D solid elements. Together with the normalized
load radius (a/4), the normalized finite slab length (L/4), and the normalized finite slab width
(W//), this additional mechanistic variable can be used to account for the differences among
various 2-D, 3-D FEM idealizations, and theoretical closed-form deflection solutions.
Separate deilection databases were created using these four variables for C3D27 element. An
example maximum interior deflection predictive model in terms of adjustment factors
(ranging from 0 to 1) was presented for future possible applications. The ultimate goal is to
bridge the gap among various 2-D and 3-D FEM idealizations and closed-form solutions for
future development of a backcalculation procedure based on the results of 3-D F EM analysis
(Lee et al., 1997; 1998; Lee & Sheu, 2001; Wu, 2003).
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