

Research Approach

- Reevaluate Pass-to-Coverage Ratio Concept
- Estimation of Edge Stress for Design

- Conversion of Different Aircraft Types and Departures
- Fatigue Relationship and Thickness Design Criteria
- Investigation of Tentative Modification Alternatives
- Determination of Equivalent Stress Factor
- Alternative Structural Deterioration Relationship

- Design Aircraft & Conversion Factors
- Fatigue Relationship
- Coverages & Basic Thickness

1

	FAA	Calculated		FAA	Calculated
Aircraft Type	P/C Ratio	P/C Ratio	Aircraft Type	P/C Ratio	P/C Ratio
SINGLE WH-30		6.22	C-130	4.15	4.58
SINGLE WH-45	E 10	5.56	L-1011	3.62	3.40
SINGLE WH-60	5.18	5.20	A-300-B2	3.51	3.45
SINGLE WH-75		4.97	A-300-B4	3.45	3.57
DUAL WH-50		3.71	B-757	3.88	3.90
DUAL WH-75	7	3.57	B-767	3.9	3.89
DUAL WH-100	3.48	3.53	DC-10-10	3.64	3.80
DUAL WH-150		3.24	DC-10-30	3.38	3.54
DUAL WH-200		3.25	DC-10-30Belly		2.88
DUAL TAN-100		4.55	B-747-200	3.7	3.53
DUAL TAN-200	0.00	3.73	B-747-SP		3.66
DUAL TAN-300	.5.68	3.34	B-777-200A	N/A	4.21
DUAL TAN-400		3.14	B-777-200B		4.21
			B-777-200C		3.97

	• G •A	lucbil ssumi	mez an ng 1.27	d Yuce 3(π a²)	(1995) = 1.6 (W _t) ²		
	Item	f3	Item	f ₃	Item	f3	Item	f ₃
	A1.60	0.808	K2.100	0.859	U1.60	0.819	72	0.912
=	B2.66L	0.826	N1.86	0.840	E-6	0.872	73	0.901
	B1.66L	0.796	N2.86	0.809	M-1	0.873	1-C5	0.833
	C2.66S	0.826	01.106	0.862	M-2	0.892	2-DT	0.873
=	C1.66S	0.795	O2.106	0.830	-	0.810	3-DT	0.883
=	D1.66	0.796	P1.812	0.835	59	0.887	2-C5	0.834
=	E2.66M	0.835	P2.812	0.806	60	0.856	4-DT	0.865
-	E1.66M	0.806	Q1.102	0.865	61	0.873	3-200	0.892
	F1.80	0.835	Q2.102	0.833	62	0.888	4-200	0.891
								Ì

Alternative Deterioration Relationship									
۰I	•Equivalent Design Factor (EDF) = $S_c / (0.75 * \sigma_e * f_3)$								
	Tentative Fatigue Equations	SSE	R ²	N					
	EDF = 0.6421 + 0.2920*log(CO)	0.119	0.793	24					
	EDF = 0.5266 + 0.3037*log(CI)	0.136	0.792	36					
-	EDF = 0.3697 + 0.3086*log(CF)	0.134	0.735	24					
	EDF = 0.5056 + 0.2879*log(PO)	0.125	0.771	24					
	EDF = 0.3911 + 0.2976*log(PI)	0.142	0.774	36					
	EDF = 0.2319 + 0.3032*log(PF)	0.140	0.712	2 195 33					
				٢					

Implementation of the Proposed Approach

- Application of the P/C & CDF Concept
- Prediction Models for Critical Edge Stress
- Application of Equivalent Stress Factor (f₃)
- Alternative Fatigue Relationship

• On-going Development of a User-friendly Computer Program Using VB5.0

Conclusions (1)

- Reexamined the P/C Concept
- Proposed and Verified the Stress Prediction Models
 Dimensionally Correct: Metric and English Systems
- Other features: finite slab size, second layer, curling, etc.Identified the Problems and Difficulties for the
- Conversions of Aircraft Types and Departures
- The CDF Concept Should Be Used
- Investigated Various Fatigue Relationships & Thickness Design Criteria

5