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Development of Performance Prediction
Models for Illinois Continuously
Reinforced Concrete Pavements

YinG-HAUR LEE AND MICHAEL I. DARTER

A new predictive modeling approach is presented and the approach for
localized failuces in 1Hinois continuousky reinforced concrete pave-
ments (CRCP) is demonstrated. Some data retrieval guidelines from the
IHinois Pavement Feedback System data base is first presented. A pre-
liminary data analysis was conducted to assist in data cleaning and
assessing the variability of the data before the analysis was performed.
Several modern regression techniques (“robust” and “nonparametric”
regressions) were introduced in a proposed new predictive modeling
approach. The proposed modeling approach was used lo develop an
improved mode! for localized failures in CRCP. The resulting model
includes several vasiables such as cumulative ESALS, slab thickness,
content and methods of the steel reinforcement, and base type for the
prediction of CRCF failures. A sensitivity analysis was also performed
to illustrate the effect of these variables on feilures. Slab thickness and
steel content are by far the most significant variables affecting failures.
Crack spacing had no effect.

Continuously reinforced concrele pavements {CRC pavements or
CRCP) have been extensively constructed throughout the 1960s and
1970s in Illinois. Approximately 60 percent of the Illinois Interstate
highways (the third largest mileage in the nation) was originally con-
structed as CRC pavements. The main incentive for constructing
CRC pavements was the elimination of contraction joints to mini-
mize joint-related distresses. The structural integrity of the concrete
slab is maintained by allowing the pavement to crack randomly while
providing reinforcement to hold the cracks tightly. The major distress
types that occurred in CRCP are jocalized failures (including punch-
outs and steel ruptures) and major spalling of transverse cracks.
The causes and factors relating to localized failures in CRC pave-
ments have been a topic among many investigators in past years
(1-3). Various algorithms and numerical models have been devel-
oped in an attempt to describe the behavior of a CRC pavement
under contraction restraints. The main focus points of these algo-
rithms and models are the prediction of crack spacing, crack width,,
concrete stress. and steel stress due 10 environmental changes and
external wheel load. The cracking behavior due to the percentage of
longitudinal steel reinforcement. concrete strength, aggregate type,

and other environmental factors has also been analyzed in 2 work

by Zollinger (4).

Most of the maintenance activities on CRC pavements are
directly related to localized failures (i.e., punchouts and steel rup-
tures.) It is often necessary to estimate these distress quantitics for
preventive design and pavement rehabilitation planning. In an
attempt to relate the total number of failures to traffic loading. slab
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thickness, percent steel reinforcement, and subbase types, the first
known predictive model based on actual CRCP performance data
was developed using the lilinois CRCP data base compiled during
the research project IHR-901 (2).

As part of the project Implementation of Pavement Feedback
System, & study of the effect of different placement methods of rein-
forcing steel (i.c., tubes versus chairs) on the performance of CRCP
in Nlinois was conducted (5).

DATA PREPARATION

The [lincis Pavement Feedback System (IPFS) data base
(1977-1991), containing the most complete source of pavement-
related information for Mlinois Interstate highways, is the main
source of data used for this study. It contains detailed information
about original and rehabilitation construction contracts, pavement
inventory data, materials, historical traffic data, distress survey,
condition rating surveys, and maintenance and rehabilitation
records. The IPFS data base is currently implemented in the Ilinois
Department of Transportation (IDOT) mainframe system (VM T’
system) using the NOMAD?2 data base management program..
Automatic summary reports of the pavement information may cas-
ily be generated, For the purpose of this study, it was decided, how-
ever, to download all the summary section information, traffic his-
tory, distress records, and rehabilitation history to a PC and store m
several PC-SAS datasets for further analysis. The PC-SAS SUM-
MARY, TRANSPOSE, and TABULATE procedures (6) were used
heavily to summarize the information of interest and to provide
more reliable data for this study.

Design and Climatic Yariables

The IPFS section summary data base includes codes for storing
CRCP reinforcement data; however, few data on the type of steel
reinforcement, diameter, spacing, and content are currently

in the data base. Fortunately, there exists some steel information,
which was obtained from the IDOT district offices (2). This infor-
mation was manually entered into the data base. In addition, IDOT’s
standard CRCP reinforcement designs (Standard 2225 and Stan-
dards 2225-1 to 2225-6) over the ycars were obtained for the rest of
the CRC pavements for which no steel information was reported
clsewhere. Generally speaking. the standard design of a given year
was used to provide reinforcement data. The reinforcement type for
these pavements was assumed to be deformed #5 and #6 bars for
pavements constructed before and after 1981, respectively.
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Different steel placement methods may affect the performance of
CRCP pavements. Even though the IPFS data base includes a code
for storing this information, very few data are recorded in the IPFS
data base. Nevertheless. it is known that [llinois CRC pavements con-
structed before September 17, 1970, were mostly constructed using
“chairs” with a few exceptions of “two-layer construction” for the
steel placement. After this date pavements were constructed using
“tubes” for placing reinforcement steels unless they were constructed
in District 1, where chair placement was required. Therefore, this
date was used as the cutoff point 1o determine whether the “chairs™
or “tubes™ placemnent method was used for a given CRC pavement.

Some additional construction data about drainage system, base
type, and environmental data were also obtained. In addition, data
on various subbasc types, including granular, crushed stone,
bituminous-aggregate mixture (BAM), and cement-aggregate
mixture (CAM), were directly retrieved from the IPFS data base.
Climatic data such as freezing index, average annual temperature,
and average annual precipitation were also obtained.

Traffic Calculation and Estimation

Traffic maps for average daily traffic, heavy commercial traffic, and
multiple unit traffic volumes are published approximately every
four years by the IDOT Office of Planning and Programming. The
yearly traffic history recorded in the IPFS data base was determined
by interpolating between those four-year periods.

Because the IPFS data base contains traffic information only up
to 1987, it is netessary to estimate the traffic growth rate for each
pavement section. A NOMAD?2 program was written to perform
automatically a huge array of regression analyses assuming that the
traffic was increasing yearly with constant compound growth rates.
With the estimated average daily traffic and ESAL traffic growth
rates, the latest 1987 waffic data were then used as a starting point
to predict the traffic into the future.

Distress Quantities

The CRCP faitures were recorded in various visible distress types.
severities, amounts, and repairs in the distress data base. For exam-
ple, -a certain amount of medium-severity transverse cracking
became high severity after a certain period of time; at the same time,
some of the high-severity transverse cracking was corrected by full-
depth repairs. To obtain a good single indicator of CRCP failures in
cach survey year, special efforts were conducted in deciding what
distress types and severities should be included. After a consider-
able amount of effort and reexamination, the 1otal number of CRCP
failures (FAIL) per mile was defined_as follows:

FAIL = 8.8 PATCH + PUNCH + MHPOT + HTCRK m

where

PATCH = all severities of permanent patches, percent area;

PUNCH = ail severities of punchouts, #/mi:

HTCRK = high-severity transverse cracking, #/mi: and

MHPOT = medium- and high-severity of potholes and localized
distresses, #/mi.

Because permanent patch deterioration was recorded in percent
area of pavement surface, it was necessary lo convert into number
of paiches per mile by assuming a 6 + 12 ft? per paich. In addition,
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high-severity transverse cracking was included and treated as an
indication of steel rupture. Medium-severity iransverse cracking
was not included here because there were good chances that differ-
ent surveyors rated low severity and medium severity inconsistently,

In this study, if the pavement was surveyed but without the afore-
mentioned distress types recorded in the data base. the total number
of failures was assigned to zero for later analysis. On the other hand,
those unsurveyed pavement sections were excluded from the con-
sideration, for example. pavements located in Chicago area (District
1) where detailed surveys were not possible because of the heavy
traffic conditions.

Additional Data from Old Vandalia
Experimental Study

The longitudinat reinforcing steel content is known to have a very
strong effect on the performance of CRCP pavements. Inadequate
steel content often results in longer crack spacings, wider crack
widths, and thus more punchout failures. To extend the range of
analysis, several sections from the Vandalia CRCP experiment
study (7) were also included in this study.

Eight sections of 7-in. and 8-in. experimental CRCP with 0.3,
0.5, 0.7, and 1.0 percent of longitudinal reinforcement constructed
in 1947 to 1948 on US 40 west of Vandalia, Illinois, were studied
over a 20-year service period (7). These pavements were placed
directly on natural fine-grained soil and carried 4.27 miltion ESALs
in 20 years. Many failures occurred in the 0.3 and 0.5 percent rein-
forcement sections in the 7-in. pavements.

Two major distress quantities, namely cracking (lin. fi/1000 fi2)
and patching (ft*/1000 ft?) were of particular interest (7) to quantify
the equivalent total number of CRCP failures in these pavements.
The reported cracking was defined as “cracks that are open or
spalled at the surface to a width of 1/4in. or more for at least half
the crack length, and sealed cracks™ (7). Because most of thern were
still in a workable condition even afier 20 years of service, only
patching quantities were converted into total number of failures per
mile for this study.

PRELIMINARY DATA ANALYSIS
Distress History and Additional Codes

A data cleaning process must be conducted before any regression
analysis can be performed. With the help of graphical representa-
tion, failures were plotted against surveyed years for each section in
the data base with additional information about route, direction,
mileposts, D-cracking, slab thickness, and constructed year dis-
played. For example, a plot as shown in Figure | was used to exam-
ine the distress trends to eliminate possible data errors. The upper
lefi-hand comer plot labeled '55-N-33.67-39.13-N-9"CRCP,
conyr=75' indicated that a pavement located on I-55. northbound,
mileposts 33.67 to 39.13, non-D-cracked, 9-in. CRCP, and con-
structed in 1975 was surveyed in 1985, 1987, and 1989 with approx-
imate failures of 7, 6, and 15, respectively. .
Each section was carefully examined. Two additional codes were
assigned 10 cach section to indicate the findings of the examination.
‘The first code was used 1o indicate whether the total number of fail-
ures is reasonable according 10 the distress history, The second code
supplements the first code 10 indicale which year of data to be
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FIGURE 1 Sample plots of distress history along I-55.

deleted if necessary. Data comection was made in 2 way that could
easily be traced back. A third code was also introduced to indicate
the reliableness of the steel information. By doing so, different sub-
sets of the final data base providing more reliable data might be ana-
1yzed for different purposes.

- Final Data Base with Non—D-Craéked CRC Pavements

D-cracking is a serious problem in Illinois Interstate concrete pave-
ments. The presence of this type of distress causes the pavement to
deteriorate prematurely. The number of sections with and without
D-cracking based on different slab thicknesses was summarized
after deleting those sections having unrealistic distress history, a
- particular suspicious data point, or unreliable calculated crack spac-
ings. The results showed that approximately 60 percent of 7-in.
IPFS sections were D-cracked whereas 40 percent for 8-in. and 20
_percent for 9-in. pavements were D-cracked. No 10-in. CRCP pave-
ments were recorded as D-cracked pavements. After carefully
cross-examining the data, excluding all D-cracked pavements, and
deleting seven IPFS data points with extremely large numbers of

failures (greater than 100 failures per mile) a data base with 586 data -

points was finally created for later analysis.

Correlation of Variables

A matrix plot containing the most important variables considered in
this study are given in Figure 2. The variable correlations can be

”

5%5-N-63.15-66.08-Y, 9" CRCP. conyr = 13

555 53.99- $7.30-N, 9" CRCP. comyr = 71

visually inspected through these plots. In addition, trimmed corre-
lation matrixes showing the variable correlations after a certain por-
tion of influential data points or possible outliers are climinated

- were also obtained. |

€RCP failures (indicated as “distr’) were strongly correlated
with age and cumulative ESAL {cesal) as expected even after 20
percent of data was trimmed. However. the correlations of slab
thickness (pavthk), steel content {percent reinforcement, area of
longitudinal reinforcement. and bonded area) to CRCP failures
change dramatically. These are good indications of having influen-
tial data points in thesc variables, which should be used with

extreme caution in later analysis.

The interrelationship between age and cumulative ESAL is also
evident. The strong correlation between slab thickness and area of

-reinforcement almost guarantecs the presence of one or the other in

the later CRCP failure model development, but never both together
10 avoid strong collinearity in the model. This is also true for bonded
area and percentage of reinforcement. Among these most important
variables to CRCP failures, slab thickness, percent of reinforcement,
and cumulative ESAL were chosen in the final CRCP failure model.

Factor Space and Limitations

The final data base was mainly constructed from the in-service
pavements, which satisfies certain design guidelines. Thicker pave-
ments were designed to carry heavy traffic loadings. A relatively
constant percentage of longitudinal reinforcement was often used.
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FIGURE2 Matrix plot with most important variables to CRCP failures (distr = failures/mi).

For example, there was limited range of reinforcement content in fic loading conditions. Knowing that the deficiencies of the unbai-
the data except for the Vandalia experimental sections. Vandalia anced factor space of the final data base exist, extreme care should
experimental sections provided some very low and very high steel be used during the modeling process as well as deriving conclusions
contents for 7- and 8-in. pavements. However, there existed no such beyond the range of data.

sieel contents for 9- and 10-in. in-service pavements. Mosi of the
final data base was 8- and 9-in. pavements, which had a fixed rein-
forcement content of approximately 0.60 to 0.62 percent. Variability of Data
In addition, the Vandalia experimental data were obtained under
very low traffic (i.c., up to 4.3 million ESALs in 20 years). There Because most of the final data base was 8-and 9-in. pavements with
existed no very low or very high steel contents under very high traf- constant reinforcement contents of approximately 0.60 to 0.62 per-
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cent, a preliminary examination of the relationships among CRCP
failures, age. and cumulative ESALs was performed., Under simitar
design conditions (BAM subbase, drainage systern, and “tubes™
reinforcement placement method), the performance of these two
groups of 8- and 9-in, pavements showed high variation.

This high variation might be the result of some other hidden vari-
ables not considered in this study. However, it is also believed that
the current practice of sampling only 10 percent of (he entire
project may be the major source of these variations. For example,
three identical i-mi pavement sections when surveyed in their first
0.1 mi and recorded to have 0, 1, and 2 failures might end up with
0, 5.3, and 10.5 failures per mile.

It is recommended that a full-length survey might be the best
solution to minimize this high variability in the total number of fail-
ures counted. If this is not possible, a much higher portion of the
project such as 20 to 30 percent should be surveyed instead so that
the accuracy of the IPFS data base can be improved.

PROPOSED NEW PREDICTIVE
MODELING APPROACH

The proper selection of regression techniques is one of the most
important factors to the success of prediction modeling. Traditional
“parametric™ regression techaiques such as linear and nonlinear
regressions require imposing a parametric form on the functions and
then obtaining the parameter estimates. With the multi-dimensional
pavement engineering problems in mind, several unresolved defi-
ciencies were frequently identified in the use of traditional stepwise
regression and nonlinear regression. These include problems in the
selection of correct functional form, large influence of potential out-
liers, violations of the embedded statistical assumptions, and failure
to satisfy some engineering boundary conditions.

Because of the innovation of computers and the almost unlimited
computing power, several ingenious iterative regression techniques
in the area of “robust” and *“nonparametric™ regressions have been
developed in the past 10 years and have gradually gained popular-
ity. They are useful especially in situations in which large data con-
tamination and little knowledge about the shape and the form ofa
function exist. For this study, particular attention is focused on the
following advanced modern regression techniques (8):

1. Least median squared (LMS or “Robust™) regression (9,10): a
robust regression technique, extremely powerful in detecting out-
liers in either response variable or predictor variables;

2. Alternating conditional expectations (ACE or “Expectation")_

(11): a nonparametric regression technique, providing optional vari-
able transformations 1o maximize the squared multiple correlation
{R*),and

3. Additivity and varfance stabilization (AVAS or “Stabiliza-
tion”} (/2): 2 nonparametric regression technique, transforming
both sides of the additive model to achicve constant error variance
assumption. '

Without imposing an wnjustified parumetric assumption, non-
parametric regression techniques strive (0 estimate the actual func-
tional form that best fits the data through the use of scatter plot
smocthers. They can be excelient supplements to traditionat para-
metric regression techniques. especially in suggesting proper trans-
formations of the response variable and the predictor variables to

”

help uncover the underlying relationships and to satisfy some
applicable boundary conditions.

A new statistical package named S-PLUS. which has been widely
used by statisticians for data analysis, was selected because of the
availability of these new regression techniques.

Muitiple Linear Regression

Multiple linear regression is one of the most time-honored and
widely used regression techniques for the study of linear relation-
ships among a group of measurable variables. Suppose there exists
atrue model to describe the relationship between response variables
(vs) and explanatory variables (or predictors, xs) (1.3):

y=xIB +¢ i=1,,..,n (2)

where x] is the ith row of the (n X p) matrix X of the column of
is if including an intercept and the explanatory variables. The
superscript T denoting the transpose of the column vector x, is
required because of the usual convention that all vectors are repre-
sented by column vectors. B is a (p X 1) vector of unknown regres-
sion coefficients and p and n are the number of parameter estimates
in the model and the total number of observations, respectively,

The basic assumptions are usually that the random errors (es) are
mutually uncorrelated and normally distributed with zero mean and
constant variance, and additive and independent of the expectation
function, For any arbitrary B value of B, the residuals r{f) can be
determined by the following expression:

®=y~dB i=1..,n &)

Based on those assumptions, multiple regression tries to find a set
of parameters B such that the sum of the squared residuals given in
Equation 4 is minimized, which is also best known as the least
squares (LS) method.

RSSP =3 (M@ =ri@®+ i@ +... + r2(®) @
FEd |
Nonlinear Regression

Practical real-world problems are often found to be nonlinear in
nature, Because of its favorable feature of handling a complicated
nonlinear model, nonlinear regression has been widely used as a
medeling technique.-However, nonlinear models are more difficult

" to specify and develop than linear regression models. “Some mod-

els are difficult 1o fit, and there is no guarantee that the procedure
will be able to fit the model successfully” (/4).

Suppose there exists a true model that best describes the rela-
tionship between response variables (ys) and explanatory variables
(xs), (14,15).

¥, =F(B, x)+e¢ i=1..... n (5)

where

F(B, x,) = nonlinear function based on the predictors,
B = (p X 1) vector of unknown regression coefficients to
be estimated,
and n = total number of observations,



Similar to linear regressions, the disturbance (or error) term is
usuzally assurned to be additive, mutually uncorrelated, and nor-
mally distributed with zero mean and constant variance. For any
arbitrary § value of B, the residuals r{f) are

=y -FRx) i=1....n ®

Unlike linear regressions whose parameters can be explicitly esti-
mated by a closed-form expression, nonlinear regressions must use
an iterative routine to find the best parameter estimates (B) such that
the sum of the squared residuals as given in Equation 4 is minimized.

LMSor “RM!" Regression

Recently, new robust statistical techniques have been developed to
avoid the large influence of outliers. The results of these methods
are still trustworthy even if a large amount of data is contaminated.
They are extremely useful in identifying a group of potential out-
liers in a single attempt. Of many robust regression techniques, the
least median of squares estimator introduced by Rousseeuw (9) and
Rousseeuw and Leroy (/0) is the most robust with respect to out-
liers in the dependent variable as well as outliers in the independent
variables or predictors.

It is assumed that the true model and the residuals are the same
as those given in Equations 1 and 2, respectively. The LMS esti-
mator (B) attempts to minimize the median instead of the sum of the
squared residuals defined as follows:

RMS(E) = med {r1(®) = med [r¥@. A Bh.... 2B D

As Rousseeuw stated, LMS regression first tries to fit most of the
data and then discover the potential outliers. The LMS method has
a breakdown point of 50 percent, which is the largest possible value,
whereas the LS method has a breakdown point of 0 percent. The
breakdown point of a regression estimate is defined as the largest
fraction of data that may be replaced by any arbitrary values with-
out causing arbitrary parameter estimates. This means that the LMS
estimates still continue to follow the trend of most of the data even
when almost half is arbitrarily corrupted. Geometrically, it corre-
sponds to finding the narowest band that covers at least half of the
observations such that potential outliers are discovered (J0).

The advantages of LMS regression are obvious especially when
analyzing field-collected pavement data that may contain as much
as 10 10 20 percent contaminated data. “Robust™ regression pro-
vides a more objective way to help identify some potential data and
model problems. These problems include actual data ermors, data
from a different population, and the inadequacy of the regression
model due to missing some important variables.

Thus, once these trouble data points are identified, more detailed
investigations should be conducted to find out why and how they
arc different from the other teniative good ones. Some trouble data
poinis may possibly be identified as ervors and subsequently be cor-
rected or excluded from the analysis. The possibility to include
other explanatory variables or other model forms in the model
should also be fully investigated to improve the fit including all the
data points. It should be emphasized, however, that no data should
be deleted without having justifiable reasons to do so. By conduct-
ing these analyses in an iterative manner. it is strongly believed that
more reliable predictive models may be developed.
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ACE or “Expectation” Algorithm

An algorithm to find the optimal transformations of the response
variable and the predictor variables such that the R-square of 2 mul-
tiple regression is maximized was introduceful. Suppose that there
exists a true additive model given as follows:

B =dix) + () + ...+ dlx) te (8)

where

¥ = response variable,
X1, X3, . . ., X, = predictor variables,
80y}, di(x), dilx), . . ., dp(x,} = unknown nonparametric trans-
formation functions of each
variable to be estimated, and
£ = random error.

The proposed algorithm uses 2 sophisticated supersmoother
while it alternatively changes the conditional expectation functions
to minimize the fraction of variance (¢?) not explained by regress-
ing 8(y)on §,(xy), . . . , d,(x,). This algorithm is often called alter-
nating conditional expectations algorithm. The e? given in the fol-
lowing expression is also called the goodness-of-fit measure (8).

80y —‘5; ¢.<:.-)]’
] ‘bp) = EBZ(J,) (9)

0,4, ...

This “nonparametric” algorithm will only give back data-
dependent estimates of variable transformations that are not
restricted to any particular functional form. However, the data ana-
lyst might be able to estimate particular parametric transformation
for each variable by plotting the suggested transformed variables
versus the original ones. The traditional Box-Cox transformation
technique can be used for this purpose. If the suggested transfor-
mations are so desirable that a single family of power transforma-
tion isnot adequate, pelynomial regression, nonlinear regression, or
any other eurve fitting techniques can also be applied separately for
the transformation of each variabie. Thus, the R-square of the fina
additive mode] is optimally maximized.

The “Expectation” algorithm provides a fully automated routine
to assist in selecting the optimal form of transformations for re-
sponse and predictor variables. However, it should be used with
caution, especially in the presence of outliers. Furthermore, because
a smoothing technique often requires a certain number of degrees
of freedom, the transformed vectors might be highly unstable if the
number of observations is not large enough. The ACE algorithm
may stil produce strong looking transformations when there is -
tle or no relationship between the predictors and the response vari-
able. This problem may be detected by the resulting relatively small
R?. More detailed discussions of its applications and limitations are
given elsewhere, (8,11,16).

AVAS or “Stabilization” Algorithm

In 1987, Tibshirani (72) successfully introduced the additivity and
variance stabilization algorithm by applying the same alternatively
backfitting techniques used in the Expectation algorithm. In contrast
1o the ACE algorithm that tries to maximize the squared multiple
correlation (R?), the Stabilization algorithm strives to achieve the
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constant error variance assumption of regression and also improve
the model fit. )

Assuming that there exists an additive model of the same form
given in Equation 8, the AVAS algorithm tries to achieve the fol-
lowing two goals simultaneousty (8):

'.I

E[OC¥} ¢ xn - o E] = X LX), (19
=)

VAR[&(» | i & {x)] = Constant an

where E[z | w] and VAR( z | w] stand for the conditional expecta-
tion function and the conditional variance function of z given w,
respectively.

The AVAS transformation is more flexible than the traditional
Box-Cox method and is often better suited to regression problems
than the ACE algorithm (8.12). Because the objective functions that
they attempt to optimize are different, the ACE and the AVAS
(ransformations behave differently for different situations. It is too
early to say which one is better. In general, some evidence shows
that the AVAS algorithm is better behaved than the ACE algorithm
when there is Little or no relationship between the predictors and the
response variable.

Proposed New Predictive Modeling Approach

For practical engincezing problems, often little knowledge about the
true functionat form is available and the data collected are also con-
founded with substantial errors. So far there exists no regression
algorithm that can perform outlier detections and variable transfor-
mations simultanecusly 1o minimize these problems. To develop a
more reliable predictive model for such complicated problems, itis
proposed (o incorporate the Robust regression, Expectation, and
Stabilization algorithms into the modeling process.

The Robust regression is proposed because of its favorable fea- -

" ture of analyzing highly contaminated data by detecting outliers
from dependent and independent variables. Through the iterative
use of the combination of these outlier detection and nonparametric
wransformation techniques, it is believed that some potential outliers
and proper functional forms may be identified. Subsequently, tradi-
tional regression techniques can be used more easily to develop the
final predictive model.

The basic procedures and concepts behind the proposed model-
ing approach are briefly discussed. First, assume a plausible linear
model relating the response variable to the explanatory variables.
Then, apply Robust regression to delete some potential outliers
based on the assumed model form. Subsequently, apply the Excep-
tion and Stabilization algorithms to find possible variable transfor-
mations that best fit the remaining data. The ransformed vectors arc
then plotied against each original variable. In addition, a plot of the
predicied versus the actual values and a plot of the residual versus
the predicted values are also provided.

Through visual inspections, the reasonableness of the suggested
transformations and the goodness of the fit can be casily accessed.
Because the suggested transformations for each variable are dis-
played in two-dimensional plots, they can be properly formutated
using traditional Box-Cox transformation. lincar (or polynomial)
regression, and nonlinear regression. These tasks are relatively
casy, because they involve only one variable at a time.

Then. revise the assumed lincar model using the suggested trans-
formations and repeat the entire process until the detected outliers
and the suggested transformations are acceptable. Finally, tradi-
tional linear regression is used to get the final regression statistics
and diagnostics of the additive modet using the transformed vari-
ables. Step-by-step procedures for the proposed new predictive
modeling approach are summarized in Figure 3.

The potential outliers detected by Robust regression are tem-
porarily excluded from the subsequent Expectation and Stabiliza-
tion trials to minimize the influence of possible data errors. How-
ever, these data points should be added back to the original data
base when analyzing the next trial linear model form. This is
because the potential outliers detected by Robust regression may be
affected by the assumed trial linear model form, but they may not
be actually bad data points. The resulting transformations suggested
by the Expectation and Stabilization algorithms may also be
affected by excluding those data points. During each iteration, how-
ever, some erroneous data may be identified and subsequently elim-
inated form the analysis. These procedures can be routinely per-
formed until an acceptable model is obtained.

Pavement Data, ¢
Preliminary Data Analysis

:

Variabie Selection, Assume a |
» Plausible Additive Model -

LMS ("Robust") Reg.
to Delete Some Outliers
ACE (“Expectation"), AVAS
{"Stabilization™) Algorithms

!

Goodness-ol-Fit,
possible Functional Forms,
Detected Outliers,

No

1 Yes
Box-Cox Transtormation,
Linear and Nonlinear Reg.

for Each Variable

]

Linear Reg. to Obtain No
Final Reg. Statistics, stc.
Sensitivity Analysis, OK?

Yes

Mechanistic-Empirical
Model

FIGURE 3 Proposed modeling procedures for outlier
detection and selection of proper functional forms.
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PROPOSED CRCP PERFORMANCE
PREDICTION MODELS

As expected, developing a predictive modet 1o adequately fit this
type of data is not an easy task. Some preliminary trials using the
traditional linear and nonlincar regression techniques have had dif-
ficulty in achieving a satisfactory model for the data.

The proposed new predictive modeling approach as described in
the previous section was followed closely and used routinely to
develop an improved model. This approach proved to have sub-
stantial improvement over the use of traditional regression tech-
niques alone in an attempt to uncover the underlying relationships
together with the consideration of the possible influence of outliers.

The results of many 1.MS regression trials indicate that a large
portion of the zero failures in the data is questionable in spite of dif-
ferent model forms analyzed. Most of these zero failures were
forced into the final data base because of some evidence showing
that the given pavement section was surveyed but did not have any
of these failures recorded in the original IPFS data base. By exclud-
ing these forced-in data points, a better model with more reasonable
predictions could be developed, although very high variations were
still present.

Several dozen predictive models using different model forms
were developed with similar prediction accuracy. The final pro-
posed model for predicting the number of CRCP failures on a per
mile basis is given as follows:

log, (FAIL) = 6,8004 — 0.0334 » PAVTHK? ~ 6.5858 * PSTEEL
+ L2875 * log, (CESAL) — 1.1408 * BAM
= 0.9367 = CAM — 0.8908 » GRAN
— 0.1258 « CHAIRS statistics: R, = 0.44,
SEE = 1.06, N = 408 (12)

- Reinf. Content(%) = 0.3

»
40 st

inf-Content(%)-=

oy i

By &
‘“f 10 G;s“

FIGURE 4 Three-dimensional sensitivity
truncated at 200 failures/mi),
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where

FAIL = 10tal number of failures in outer lane. #/mil;
THICK = CRCP slab thickness, in.;
PSTEEL = longitudinal reinforcement. percent;
CESAL = cumulative ESALs, millions:
BAM = | if subbase material is bituminous-aggregate mix-
ture, O otherwise:
CAM = | if subbase material is cement-aggregate mixture,
0 otherwise;
GRAN = | if subbase material is granular, 0 otherwise; and
CHAIRS = | if chairs used for reinforcement placement, 0 if
tubes used.

The regression summary outputs and the goodness-of-fit of the
proposed model were presented elsewhere (5). Notice that a smal}
number of 0.1 is added to the actual total failures {“distr™) to avoid
numerical difficulties. This model also satisfies the boundary con-
dition of resulting zero failures when no traffic exists.

Some plots showing the sensitivity of the various factors in the
proposed model are presented in Figures 4 and 5. Figure 4 shows the
relationships among cumulative ESALSs, slab thickness, reinforce-
ment content, and total number of failures per mile (fit). Figure 5
shows the effects of reinforcement placements and different base
types. The general trends of the effects appear to be reasonable. Note
that the plots are extended a bit beyond the range of the actual data
to show how the model performs. The reinforcement content of a
given CRC pavement has a large effect on the occurrence of failures.

The proposed model also includes the type of reinforcement
placement (CHAIRS). The use of chairs results in fewer total fail-
ures; however, the difference is not significant, Even though the
analysis does not provide a lot of support for the placement method

Reinf. Content(%) = 0.5

To L
a‘w [ . ° t’."\

analysis for reinforcement contents (plot
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CRCP Pavements (0.6% Steel, BAM subbase)
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placements and base types.

having a significant effect on the development of CRCP failures,
this does not necessarily prove that this is the case. As previously
discussed, the data base does not provide a clean separation of two
identical groups of CRC pavements (i.e., one with tube placement
and the other with chair placement). Many factors may be interact-
{ing with thickness, traffic loading, or other factors to cause the true
effect of placement type 1o be hidden. '

Some research performed in Illinois on 1-70 has clearly shown
that the depth of reinforcing steel greatly affects the crack width and
thus the breakdown of cracks and development of CRCP failures.
Thus. if the wbe placement method results in a greater variation in
depth of steel, there would likely be a greater chance for more fail-
ures. This may be the case even though the data did not clearly show
this to be true.

The effects of different base materials were also investigated. A
CRC pavement with BAM base has the best overall performance,
which also agrees with previous findings (/7). On the other hand, a
conclusion different from the previous literature (17) is derived
from this analysis that CAM base has about the same effect on the
development of CRCP failures as granular base.

FIGURE 5§ Two-dimensional sensitivity analysis; reinforcement

SUMMARY AND CONCLUSIONS

A study of the factors affecting the performance of CRCP was con-
ducted using the in-service IPFS data base. Detailed guidelines for
data preparation are provided. The entire performance records of
bare CRC pavements in Itinois were retricved. In addition, some of
the old Vandalia experimental sections were included in this study
because they provided additional ranges in steel content (03w 1.0
percent). The data were cleaned carefully to remove sections that had
D-cracking, questionable data (high failures), very short sections,
and so forth because these would only increase the potential errors.

A preliminary data analysis was conducted to assist in data clean-
ing, assess the variability of the data, and understand the interrela-
tionships between variables before actuatly performing the regres-
sion analysis. Very high variations of the data are evident,
suggesting that the current practice of surveying 10 percent of the
entire pavement network may be inadequate.

Several modern regression techniques (robust and noNparametric
regressions) were introduced in a proposed new predictive model-
ing approach with detailed step-by-step guidelines. The proposed
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modeling approach was routinely used to derive a more reliable pre-
dictive model. The resulting model includes several variables such
as cumulative ESALs. slab thickness, content and methods of the
steel reinforcement, and base type for the prediction of CRCP fail-
ures. A sensitivity analysis was also performed to illustrate the
effect of various factors in the model, which also appeared (o be rea-
sonable.
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