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Corner loading and curling stress analysis for
concrete pavements — an alternative approach

Ying-Haur Lee, Ying-Ming Lee, and Shao-Tang Yen

Abstract: Since corner breaks are one of the major structural distresses in jointed concrete pavements, this research
: study mainly focuses on the determination of the critical bending stresses at the corner of the slab due to the individ-
B ual and combination effects of wheel loading and thermal curlirig. A well-known slab-on-grade finite element program
(ILLI-SLAB) was used for the analysis. The structural response characteristics of a slab corner were first investigated.
Based on the principles of dimensional analysis, the dominating mechanistic variables were carefully identified and ve:
ified. A series of finite element factorial runs over a wide range of pavement designs was carefully selected and con-
ducted. The resulting JLLI-SLAB corner stresses were compared with the theoretical Westergaard solutions, and
adjustment factors were introduced to account for this discrepancy. Prediction equations for stress adjustments were de
veloped using a modern regression technique (Projection Pursuit Regression). A simplified stress analysis procedure
was proposed and implemented in a user-friendly computer program (FLLISTRS) to facilitate instant stress estimations
and practical trial applications.

Key words: concrete (rigid) pavements, corner breaks, loading, thermal curling, corner stress.

Résumé : Puisque les ruptures d’angles sont 'une des principales causes de défaillance des chaussées faites de dalles
de béton, ce projet de recherche se concentre principalement sur Ja détermination des contraintes critiques en flexion
auxquelles est soumis P'angle de la dalle par effets combinés des sollicitations par les roues et de I'ondulation de na-
ture thermique, Un programme par éiéments finis bien connu de dalles sur sol (ILLI-SLAB) a été utilisé pour
I'analyse. Les caractéristiques de la réponse structurelle de I'angle d'une dalle ont d’abord €té étudiées. En se basant
sur les principes de ’analyse dimensionnelle, les variables mécanistes dominantes ont été identifiées et vérifiées avec
soin. Une série d’essais sur les facteurs des éléments finis, couvrant une large gamme de conception de chaussée, a i
choisie et conduite avec soin. Les contraintes d’angle résultant du programme ILLI-SLAB ont été comparées aux solu-
tions théoriques de Westergaard et des facteurs d’ajustement ont ét€ introduits afin de rendre compte des divergences.
Les équations de prédiction de I'ajustement des contraintes ont €l¢ développées au moyen d’une technique de régres-
sion moderne (Projection Poursuite Régression). Une procédure simplifiée d’analyse des contraintes a éié proposée et
mise en ceuvre au sein d’un programme informatique convivial (ILLISTRS) dans le but de faciliter les estimations des
contraintes instantanées ct les expérimentations pratiques.

Mots clés . chavssée (rigide} en béton, ruptures d’angles, sollicitations, ondulation thermique, contrainte d’angle.

[Traduit par la Rédaction]

Introduction Given certain design, construction, and loading conditions
corner breaks may occur due to fatigue damage at the slal
corner over time.

The temperature differential through the slab thicknes
and the self-weight of the slab induce additional therms
curting stresses at the slab corner. For daytime curling cos
dition, compressive curling stresses are induced at the top o
the slab whereas tensile stresses occur at the bottom; or vie
versa for nighttime curling condition. Curling stress may b
quite farge and cause the slab to crack or result in come
breaks when combined with only very few number of lod

Currently, most design procedures for concrete pavement
thickness do not consider corner stress or curling stress in
fatigue analysis, but many researchers have indicated that it
should be considered to warrant a zero-maintenance thick-
ness design (Lee and Lee 1996, Lee et al. 1997; Darter and
Barenberg 1977). “Load repetition combined with loss of
support and curling stresses” are usually recognized as the
main causes for corner breaks (ASTM 1893; SHRP 1993).
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. slab-subgrade interface. To more accurately and realistically
B account for the effects of finite slab size and possible loss of
W subgrade support due to a temperature differential, finite ele-
i ment analyses should be used. Nevertheless, the difficulties
& of the required run time and complexity often prevent such
@ analyses from being used in practical pavement designs.

# The main objectives of this research work were to develop
' an alternative stress determination process, which can be in-
3 comporated into existing mechanistic-based design proce-
M dures with sufficient accuracy and efficiency for practical
$t pavement designs. Specifically, this paper primarily focuses
# on the determination of critical bending stresses at the slab
I corner due to loading and curling to control the cccurrence
i of corner breaks.

" ¥ Closed-form solutions

g Corner loading
In the analysis of a slab-on-grade pavement system,
L Westergaard has presented closed-form solutions for three
primary structural response variables, i.e., slab bending
stress, slab deflection, and subgrade siress, due to a single
wheel load based on medium-thick plate theory. Based on
the assumptions of an infinite or semi-infinite slab over a
dense liquid foundation (Winkler foundation), Westergaard
{1926) applied a method of successive approximations and
Fobtained the following equations for a circular corner load-
ing condition:

Oue = 2P w(ﬁ%)

hz

P a
B = —|1.1-0.88} /2=

kﬂ[ (‘/_:)]

bwhere o, 1s the critical corner stress, [FL2} &, is the criti-
¢al corner deflection, [L]; P is the total applied wheel load,
[F}; & is the thickness of the slab, [L}; a is the radius of the
wplied load, [L]; I = (ER/(12(1 — pHk))** is the radius of
relative stiffness of the slab-subgrade system, [L]; k is the
modulus of subgrade reaction, {FL}L E is the modulus of
elasticity of the concrete slab, [FL-2]; and p is the Poisson’s
fatio of the concrete. The [F] represents the primary dimen-
'éicm for force and [L] represents the primary dimension for
Mength. The distance to the point of maximum stress along
the corner angle bisector was found to be roughly

21 X, = 2J2al = 2.38Jal

The above stress and deflection equations were derived us-
ng a simple approximate process and have been debated and
kd to numerous revisions such as those proposed by
Bradbury, Kelly, Teller and Sutherland, Spangler, and Pickett
gver the years (loannides 1984)., Despite this argument,
floannides et al. (1985) later has indicated that the 1LLI1-
LAB finite element results closely fall between those pre-
dicted by Westergaard and Bradbury. The ILLI-SLAB
stresses are the minor principal (tensile) stresses occurring at
top fiber of the slab corner. Thus, Westergaard’s approxi-
nation was still relatively good.
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Thermal curling

Considering curling stresses caused by a linear tempera-
ture differentiat on a concrete slab over a dense liquid foun-
dation, Westergaard (1927) developed equations for three
slab conditions (i.e., infinite, semi-infinite, and an infinite
long strip). The interior curling stress, O ([FL-%), for an in-
finite slab is

EoAT
3 = =2
Bl e T

where o is the thermal expansion coefficient ([T-']) and AT
is the temperature differential through the slab thickness
([T]). The [T] represents the primary dimension for tempera-
ture,

Bradbury (1938) later expanded Westergaard’s bending
stress solutions for a slab with finite dimensions in both
transverse and longitudinal directions. The edge and interior
curling stresses, ., and G; ([FL72]), can be determined by

CEaAT
Oee = —2"
[4] - EoAT - 2cos A cosh A (tan A + tanh &)
2 sin 2\ + sinh 24
_ EaAT | C) +nC,
AT AP

where A = B/({/8), B is the finite slab width or length ({L]),
and C; and C, are the curling stress coefficients for the de-
sired and perpendicular directions. However, there exists no
explicit closed-form solution for corner stress.

Loading plus thermal curling

Considering the combined effect of loading plus curling,
Bradbury further analyzed the curling stress on a diagonal
corner section located at or near the section at which the
maximum loading stress occurs, i.e., the location determined
by eq. [2]). Consequently, Bradbury derived the following ap-
proximate corner curling stress:

_. EoAT ja

5 =
3] % 3-w V!

where G, is the maximum curling stress to be combined
with the maximum stress induced by loading at the corner,
[FL7?]. Even though both Westergaard and Bradbury sug-
gested that this effect could be treated as “'a simple matter of
addition” in most cases, many investigators indicated that
such an action may not always be conservative because of
the possible loss of subgrade support and the violation of
full contact assumption (loannides et al. 1983; Korovesis
1990).

Finite element computer program

The analysis of finite slab length and width effect was not
possible until the introduction of finite element models. The
basic tool for this analysis is the ILLI-SLAB finite element
computer program, which was originally developed in 1977
and has been continuously revised and expanded at the Uni-
versity of Tllinois over the years. The ILLI-SLAB model is
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based on the classical medium-thick plate theory, which uses
the 4-noded 12-degree-of-freedom plate bending elements.
The Winkler foundation assumed by Westergaard is mod-
eled as a uniform, distributed subgrade through an equiva-
lent mass foundation. Curling analysis was not implemented
until versions after June 1987. Heinrichs et al. (1989) and
Huang (1993) indicated that the ILLI-SLLAB model had ex-
tensive checking, revisions, and verifications by many re-
searchers, could structurally model many key design factors
of importance, and was more free of errors than any other
available computer program for rigid pavements. Huang also
reached similar conclusions through many extensive com-
parison studies among the KENSLABS, ILLI-SLAB, and
JSLAB models. With some modifications to the original
codes, the ILLI-SLLAB model (Korovesis 1990) was success-
fully recompiled using Microsoft FORTRAN PowerStation
(Microsoft Taiwan Corp. 1994). The applicability of the
TLLI-SLAB finite element program for stress estimation was
conducted and verified through comparisons of the resulting
ILLI-SLAB stresses and the actual field measurements from
some test sections of Taiwan’s second northern highway, the
AASHOQ road test, and the Arlington road test.

Characteristics of corner stresses

The structurat response characteristics of a slab subjected
to the individual and combination effects of a single-wheel
corner load and a linear temperature differential were first
investigated. A preliminary analysis under this study has
also indicated that the location of the maximum combined
stress due to leading plus curling varies from case to case.
Thus, unlike the analysis of interior or edge stresses where
the maximum stresses occur at the same critical center or
mid-slab location, the analysis of corner stresses is probably
the most difficult one among these three cases. As illustrated
in Fig. la, the following parameters were also assumed:
=7 Wi=17 1= 1063 cm, i = 305 ¢cm, k =
65.0 kPa/mm, E = 34.5 GPa, v = 2410 kglms, and L = 0.15.
Note that a/f = 0.1 and ¢ = 18.8 cm were selected for the
given corner load and AT = ~11.1°C and o = 9.9 x [07%/°C
were chosen for the temperature differential.

Loading onily

Under this case study, a tire pressure, p, of 537 kPa was
selected and the loaded area was equal to 19 x 19 cm? The
resulting maximum tensile stress was 439 kPa, located at (x,
¥) = (56.6 cm, 56.6 cm). This point is equivalent to a dis-
tance of 79.0 cm along the corner angle bisector. According
to Westergaard’s equation (eg. [11), the corresponding maxi-
mum corner stress was 435 kPa at a distance of X, =
80.5 cm. Thus, the ILLI-SLAB results agrce very well with
Westergaard's solutions for this case.

Upward curling only

In this case, AT = ~11.1°C and & = 9.9 x 10°%°C were as-
sumed. A more realistic assumption of partial contact at the
slab—subgrade interface was allowed and the self-weight of
the concrete slab was also considered. For the nighttime
condition when the temperature on the top of the slab was
lower than at the bottom of the stab {or AT < 0), an upward
curling occurred. Due to the sclf-weight of the slab, tensile
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stresses occurred on the top and compressive stresses al th
bottom of the slab. It is worth mentioning, however, that th
maximum tensile stress (1859 kPa) occurred at the center ¢
the slab rather than the corner.

Large loading plus small curling

To illustrate the combination effect, a relatively large an
hypothetical tire pressure, p, of 5374 kPa together with th
same temperature differential was assumed- in this case
Since nighttime (negative AT) curling condition will result it
additional tensile stress at the top fiber of the slab, this stud,
is only limited to the most critical case of corner loading
plus nighttime curling. The resulting maximum tensile stres:
was 4711 kPa, located at (x, y) = (10 cm, 102 cm), which i
equivalent to a distance of 102 cm along the corner angle bi
sector. This result is approximately equal to the sum of 1
times of the stress due to the loading-only case (p -
537 kPa) and the tensile stress at the specified point due «
curling alone.

Small loading plus large curling

This case assumes a tire pressure, p, of 537 kPa togethe:
with the same negative linear temperature differential. The
resulting maximum tensile stress was 2001 kPa, located a
(353 cm, 353 cm) which is equivalent te a distance, X, o
4994 c¢m along the diagonal line. In fact, it was very close
to the center of the slab and the magnitude of the stress wa:
approximately equal to the sum of both individual effects a:
that point.

Medium loading plus medium curling _

This case assumes a tire pressure, p, of 1399 kPa such thai
the resulting loading-only stress will have about the samc
magnitude as the aforementioned curling-only effect. The re-
sulting maximum combined tensile siress was 2110 kPa, lo-
cated at (304.8 ¢m, 304.8 c¢m). This critical stress locatior
was far away from the point of X, = 80.5 cm as determined
by Westergaard’'s equation. The resulting maximum tensile
stress was less than the summation of both individual effects
using the principle of superposition.

Location of the maximum combined stresses

The individual and combined stress contour plots of all
cases are shown in Figs. 1b-1f, respectively. In summary, if
the temperature differential is relatively small combined
with a large corner load, the critical stress location is very
close to Westergaard's maximum Joad stress location. How-
ever, if the temperature differential is very large along with a
very small corner load, the critical stress location may shift
toward and up to the center of the slab. For the combined ef-
fects of medium loading and medium curling, the maximum
stress location falls between them. Thus, the location of the
maximum combined stresses due to loading phus curling will
fall within the Weslergaard's location and the center of the
slab along the corner angle bisector as shown in Fig. 2. Fur-
thermore, the corner stress along the line of a [/4 circle cen-
tered at the very corner of the slab also shows about the
same magnitude at most locations. This may also help to ex-
plain the mechanism of the development of corner breaks.

Research continues with special attentions to this different
critical stress Jocation problem. Consequently, necessary
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g Fig. 1. Distribution of the tensile stresses (kPa) on the top of the slab: (a) case study of corner stress analysis, (&) loading only,
i (c) curling oniy (nighttime condition), () large loading plus small curling, (e) small loading plus large curling, and (f) medium loading

E plus medium curling.
: fa) (6)
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modifications were made to the existing ILLI-SLAB codes
to facilitate the search of critical stresses and locations along
the corner angle bisector or the diagonal nodes up to the
center of the slab for the remaining analyses.

Identification of dimensionless mechanistic

| variables

When there exist no closed-form solutions for the selected
theoretical analysis tools or when analyzing most empirical

. but practical engineering problems, the principles of dimen-

sional analysis is often used. The principles of dimensional

. analysis treat a theoretical equation in non-dimensional
 form, which is composed of a set of many dimensionless pa-

rameters representing a concise interrelationship among any

: complicated combinations of all input variables with dimen-

sions. Thus, the number of parameters and data analysis
time and costs may be reduced dramatically.

Westergaard’s closed-form solutions were based on the
ideal assumptions of an infinite or semi-infinite slab size,
full contact at the slab-subgrade interface, and a single
loaded area. Through the use of the principles of dimen-
sional analysis, earlier investigators ([oannides et al. 1985)
have demonstrated that theoretical Westergaard solutions and
finite element solutions for three primary structural re-

Length {cm)

Q

200 400

Length (cm)

Fig. 2. Expected maximum stress jocation.

Location of Max. Combined
Tensile $tress on Top

N

Center of the Slab

N
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sponses due to a single wheel load can be concisely defined
by the following expression for a constant Poisson’s ratio

(usually g = 0.15):
L w
Y

2 2 2
(6] ch X Skl ’ il__z
P P P

=

~|R
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where ¢ and g are the slab bending stress and the vertical
subgrade stress, respectively, [FL2); § is the slab deflection,
[L]; fi is a function of a/l, L/I, and W/, and L and W are fi-
nite slab length and width, [L]. Note that the variables in
both sides of the expression are all dimensionless. The de-
pendent variables are oh%/P, 8k’/P, and qI*/F, which are only
dominated by the normatized load radivs (a/l} and the nor-
malized slab length and width (Ll and W/I) rather than the
other input parameters, such as E, h, k, and a.

Furthermore, according to recent research by Lee and
Darter (1994a) for the stress analysis at the very edge of the
slab, concise relationships have been proposed and numeri-
cally verified through a series of finite element runs. The
dimensionless mechanistic variables due to the effects of
thermal cutling alone and loading plus curling for a constant
Poisson’s ratio are

2
o & _q.i = fz(aAT, “?', *}“',‘v Yh_")

E 12 2
o dh gh a L W Yh® ph
7 Ty Ty Ty ‘*'aAT)_s_v_v_
7] E 17 k? ({ LA R TS A
_yh? ph
Dy = LT

where v is the unit weight of the concrete slab, [FL™*]; and f,
and f; are functions for curling alene and curling plus load-
ing, respectively. Also note that D} is defined as the relative
deflection stiffness due to the self-weight of the concrete
slab and the possible loss of subgrade support, whereas Dy, is
the relative deflection stiffness due to the external wheel
load and the loss of subgrade support.

Conceptually, the above relationship should be applicable
to any given loading conditions. To numerically verify the
above relationships for the individual and combined comer
stresses due to loading and thermal curling in this study, sev-
eral series of factorial finite element runs were performed.
While keeping the dominating mechanistic variables con-
stant but changing any other individual input variables to
different values, the finite element results have indicated that
the aforementioned relationship also hold for the corner con-
dition (Lee et al. 1996).

Development of corner loading and curling
stress prediction models

A series of finite element factorial runs were performed
based on the dominating mechanistic variables identified.
Several BASIC programs were written to automatically gen-
erate the finite element input files and summarize the desired
outputs. The finite element mesh was generated according to
the guidelines established in earlier studies (Toannides
[984). The projection pursuit regression technique intro-
duced by Friedman and Stuetzle (1981) was used for the de-
velopment of the following three stress prediction models:
1. Case T (loading only): Full contact assumption was ap-
plied, no temperature differential existed, and the self-
weight of the slab was neglected.

2. Case I (loading plus self-weight): Partial contact at the
slab—subgrade interface was allowed. Although the tem-

Can. J. Civ. Eng. Vol. 29, 2002

perature differential was set to zero (AT = 0), the self-
weight of the slab was considered in this case.

3. Case HI (loading plus nighttime curling); A more gen-
eral case for loading plus curling. Partial contact was al-
lowed, and both the temperature differential (AT < 0)
and the self-weight of the slab were considered.

The stress prediction models were represented in the form
of adjustment factors (R), which were specially chosen to
satisfy theoretical boundary conditions. As a result, R values
range from O to 1, or at most up to an approximate maxi-
mum value of 1.2 for all three cases, which may also help to
control the prediction accuracy.

Application of the new predictive modeling technique
Projection pursuit regression (PPR) techniques introduced
by Friedman and Stuetzle (E981) strive to model the re-
sponse surface (y) as a sum of nonparametric functions of
projections of the predictor variables (x) through the use of
local smoothing techniques. Assuming there is a true model:

M,
8]  y=5+3 Babdnlaln+e

m=1

where x = (x|, X3, -4, xp)T denotes the vector of predictor
variables, ¥ is the expected (or mean) value of response vari-
able, B,, is the regression coefficient, and € is the residual or
random error. The PPR algorithm strives to minimize the
mean squared residuals over all possible combinations of B,,,
$,,, and a,, values. Conceptually, the explanatory variables x
are projected onto the direction vectors ay, a,, :*-, a,, to get
the lengths of the projections a,\x, where m = 1, ---, M,. An
optimization technique is also used to find the best combina-
tions of nonlinear transformations ¢, ¢,, ---, ¢, for the
multi-dimensional response surface. The &,(af x) represents
the unknown nonparametric transformation functions of the
estimated projected lengths alx.

As proposed by Lee and Darter (1994b), the two-step
modeling approach using the PPR technique was utilized for
the development of prediction models. Through the use of
local smoothing techniques, the PPR attempts to model a

‘multi-dimensional response surface as a sum of several non-

parametric functions of projections of the explanatory vari-
ables. The projected terms are esseatially two-dimensional
curves, which can be graphically represented, easily visual-
ized, and properly formulated. Piecewise linear or nonlinear
regression techniques were then used to obtain the parameter
estimates for the specified functional forms of the predictive
models. This aigorithm is available in the S-PLUS statistical
package (Statistical Sciences Inc. 1995). A practical predic-
tive modeling example using this approach can be found in
the literature (Lee and Darter 1994p),

Case I: loading only

In Case I, a single wheel load was applied at the siab cor-
ner. There was no thermal curling effect and the
Westergaard's full subgrade support was assumed in this
case. Based on previous investigation (loannides et al
1985), Westergaard’s infinite slab assumption may be
achieved if the normalized slab length (L//) is equal to 5.0 or
more. Thus, a more conservative value of 7.0 for both LA
and W/l was selected to ensure infinite stab condition. The
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f Table 1. Proposed prediction models for corner stress adjustments.

R, = 1.030 + 0.030dD, + 0.045P,

b, = 92,145 — 149.276{A1) + 59.747(A1)?

o, = {—6,034 + 23.128(A2) - 22.022(A2) ifFA2<06
~0.117 + 0.375(A2) if 0.6 < A2

Al = 0.8272x]1 ~ 0.1219x2 + 0.0002x3 + 0.5485x4
A2 = -0.9034x] + 0.2973x2 — 0.0118x3 — 0.3088x4

X1 = [x1, £2, x3, xd] = 3,£+E,£(£),J§+JE
ot TN T

Ry = 0.9949 + 0.17037®, + 0.03020®,

- Finite slab size

Loading plus self-weight

(4T = 0) _ [-0.85525 + 15.53557A1) + 1.71139(A1)? if Al < 0.1
- 10.24816 + 0.28387(Al) ~ 0.06692(A1 )2 if Al > 0.1

—0.93998 + 3.72027(A2) + 11.1383%(A2)? if 42 < 0.18

2= {-293892 +16.93742(A2) ifA2>0.18

Al = —0.95810x1 + 0.03604x2 + 0.28368x3 — 0.00231x4 — 0.00033x5 ~ 0.00236x6

- 0.00144x7 + 0.01621x8
A2 = (1.99699x1 — 0.02358x2 + 0.0553443 - 0.00265x4 + 0.00055x5 + 0.01611x6

- 0.00041x7 - 0.04602x8

X = [x], 12, ..., 18]

-, £, 3(5). (5‘—) DP, DP, DG, 2L, (EJ DG
AN ANTAV DG '\
Limits: 005 € a/f $ 03, 2<S LIS |5, Wi =L, 1 S DG < 10, 2 < DP 5 130,

DG = Dy x 10°, DP = D, x 10°

Loading plus nighttime curling Ry = 0.2548 + 0.3076®, + 0.10584, + 0.05934D,

(AT < 0) —0.28987 + 0.02840(Al) ifAL<0
' {—0.22478 + 0.40575(Al) if Al >0
—1.46318 + 0.39571(A2) + 0.00231(A2)? — 0.00155(A2)° ifA2 <15
2= {5.06880 ~0.32371(A2) if A2 > 15
0.73250 + 0.74738(A3) ifA3<0
+T {068128 + 0.25940(A3) if A3> 0

Al = -0.04291x] + 0.56894x2 — 0.43915x3 + 0.05771x4 — 0.12609x5 + 0.025%1x6
+ 0.01885x7 - 0.1551Bx8 + 0.50270x9 — 0.01229x10Q + 0.31315x}1 — 0.00903x12
+ 0.00649x13 + 0.28839x14 — 0.04413x15 + 0.03329x16 - 0.00002x17
A2 = -0.02058x1 + 0.83621x2 — 0.36689x3 + 0.25029x4 —.0.16713x5 + 0.04484x6
+ 0.07580x7 + 0.03647x8 — 0.09497x9 + 0.00207x10 — 0.04534x11 - 0.00721x12
+ 0.0007x13 + 0.23382x14 + 0.01217x15 + 0.01038x16 — 0.00016x17
A3 = 0.04637x| ~ (1.44327x2 + 0.39157x3 + 0.47010x4 - 0.12200x5 — 0.00537x6 — 0.00851x7
— 0.01246.8 — 0.48078x9 + 0.00443x10 + 0.01520x11 + 0.00322x12 ~ 0.00293x13
+0.42430x]14 + 0.01628x15 — 0.01370x16 + 0.00007x17
X =[x], 22, ..., X17] = [all, LI, ADT, (allY{L/D), (a/lDADT, (LIHADT, (a/D(L/DADT, DP, DG,
DP(DG), DP(afl), DP(L/]), DP(ADT), DG(a/l}, DG(L/l), DG(ADT), ADT(LA)a/H(DPYDGY

Case 1I: loading plus self-weight

In Case 1I, the combination effect of a single wheel load
and the self-weight of the slab at the slab corner was consid-
ered. A linear temperature differential AT was assumed zero

- following factorial finite element runs were conducted: a/l =
¢ 0.050.1,02,03,L/1=2,3,4,5,6,7.WI=2,3,4.50.7;

Since L/f and W/i are analogous, a total of 84 runs only

T and L/l = WIL

were necessary if slab length was chosen to be greater than
slab width. The resulting maximum corner stresses were ob-
tained and compared to the Westergaard solution. Prediction
model was developed for the adjustment factor (R) and sum-
marized in Table 1. This prediction model is also applicable
to a larger slab when the upper bound value of 7.0 is used
for the normalized slab length or width (L/, W/I).

in such a case. Therefore, the [L.LLI-SLAB program was mod-
eled to allow partial contact at the slab—subgrade interface,
since a complete full factorial of all the six dimensionless
parameters, which requires a tremendous amount of com-
puter time, is not feasible. Thus, the following factorial fi-
nite element runs were conducted: @/ = 0.05, 0.1, 0.2, 0.3;
Lil=2,3,4,5 7,9 11,13, 15; W/ = L/, and aAT = 0.
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Notice that a squared slab up to a maximum normalized
slab length (L/]) of 15, which may satisfy Westergaard's infi-
nite slab assumption for thermal curling analysis. Further-
more, to account for D, and D, effects without increasing
the number of finite element runs, the above factorial runs
were randomized by these two factors for different a/! values
using the concept of experimental design. For a/l = 0.05,
0.10, 0.20, and 0.30, the following combinations of (DG,
DPy = (D,, D) x 10° factorial runs were conducted: (1, 23,
(10, 30), (7, 130); (4, 30), (7, 70), (4, 130); (4, 2), (7, 30),
(10, 70% and (1, 2), (10, 70), {1, 130), respectively.

After conducting considerable amounts of PPR trials, pre-
dictive model was developed for stress adjustment factor (R)
and summarized in Table 1.

Case III: loading plus nighttime curling

Cases Il and ]I all consider the combination effect of a sin-
gle wheel load and the self-weight of the slab at the siab cor-
ner. However, a nighttime linear temperature differential
(AT < 0) was assumed different from zero in this case. There-
fore, other than AT was selected differently, the aforemen-
tioned factorial design of finite element runs for Case If was
also adopted for this case, The AT values were selected as fol-
lows: AT = -5.5, —1L.1, —16.7, —22.2°C (0. = 9.9 x 10°5/°C).
Thus, a total of 432 factorial finite element runs were con-
ducted for this analysis. The following adjustment factor (R)
was carefully selected to account for the theoretical differ-
ence between Case II and Westergaard's interior curling
stress solutions:

[92] R= OitCaselty ~ TigCaser

O
or
[9b] ci(CaselIl) = 0'i(Cascll) + RGCO

where o; is the combined maximum finite element corner
stress ([FL2]) and o, is defined by eq. [3]. By using the
PPR algorithm, the predictive model for R was developed
and summarized in Table 1.

Verification of the proposed corner stress
prediction models

To further verify the applicability of the proposed predic-
tion models for all three cases, totally different sets of data-
base were created. The following input parameters were
chosen: E = 20.7, 379, 55.1 GPa; k = 13.5, 67.8,
135.5 kPa/mm; L = 3.05, 6.10, 9.15 m; h = 20.3, 30.5,
40.6 cm; AT = 0, -11.1, -16.7, -22.2°C (@ = 9.9 x 107%/°C).
Note that the other pertinent input parameters are ¢ =
254 cm, g = 1433 cm, P = 40 kN, p = 620 kPa, u = 0.15,
¥ = 2410 kg/m*, and W = L. This will result in a total of 81
ILLI-SLAB runs with the ranges of a/l = 0.07 ~ 0.21, L/
and W/l = 1.4 ~ 15.9 for Case 1 and Case I, and a total of
243 ILLI-SLAB tuns for Case 111

For values outside the specified limits of the prediction
model, the upper or lower bounds were applied for the anai-
ysis. The predicted stresses were plotted against the resulting
ILLI-SLAB corner stresses (Lee et al. 1996: Lee and Lee
1995}. Almost perfect agreement of the stress predictions for
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Case I and Case II was noted. There exists, however, some
minor discrepancy for Case 1II due to the critical location of
minor principal stress changes from case to case. The possi-
bility of incorporating the location of critical stress occur-
rence into the process of stress estimation should be further
investigated for future improvement.

Effect of a second subbase layer

The subgrade & value was originally developed for charac-
terizing the support of natural soils with fairly low shear
strength. Substantially higher £ values were obtained based
on plate tests on the top of granular and stabilized base lay-
ers. The FAA airfield pavement design approach as well as
the current PCA design procedure and the 1986 AASHTO
Guide for concrete highway pavements all adopt the concept
of a composite “top-of-the-base” k-value for design, though
many researchers have indicated the inadequacy of this con-
cept. Through the review of results from several field studies
and the examination of the k-value methods introduced in
the 1986 AASHTO Guide, “it is recommended that k values
be selected for natural soil materials, and that base layers be
considered in concrete pavement design in terms of their ef-
fect on the slab response, rather than their supposed effect
on k value” (Hall et al. 1995; Darter et al. 1995). Improved
guidelines for k-value seiection from a variety of methods
are provided in the 1998 Supplement Guide for the design of
concrete pavetnent structures accordingly.

Even though the concept of transformed section was fre-
quently autilized to account for the stress reduction factor
(Rs) due to a bonded or unbonded second layer, it was some-
times found misused in the literature (Salsilli-Murua 1991;
Lee et al. 1997; Kuo 1994). Subsequently, a more complete
treatment of this concept is presented as follows.

Stress adjustment due to a second unbonded subbase
layer

Following the formulation given by Tabatabai-Raissi
(1977), a system of two unbonded iayers is transformed into
an equivalent single layer based on the assumption of same
total bending moment as shown in Fig. 3. The maxirum
bending moment per unit width of a given single layer is
equal to oh¥6. Assuming both layers have the same
Poisson’s ratio, the relationship of the top layer stress (o;)
and the bottom layer stress (g,), the total bending moment
per unit width (My), and the effective thickness (k) can be
expressed by

oy S By
G2 Eyhy
2
(111 Mp=3 p2 s Eyhy 2 = Gl
6 £y 6

Esh
12 hogr = IhE 1 2222 2
[12] it i {Eu’!] ) ]

in which E, and E, are the modulus of elasticity of the stab
and subbase layers, respectively, and h; and h, are the thick-
ness of the slab and subbase layers, respectively.
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Fig. 3. Transforming two unbonded layers into an equivalent single layer: (@) single layer, (b) two unbonded layers, and (c) equivalent

single layer.
(a) (b)
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Fig. 4. Considering two bonded layers as an equivalent single layer: (a) two bonded layers, (b) strain, and (c) stress.
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Alternatively, using the equivalent moment of inertia per
unit width (I) for the transformed section with modulus £ I
the effective thickness (A,q) and the slab bending stress
(Gynbona) ©f the two-layer unbonded system can be deter-
mined by

3 3 3
R R R YL
£, z g2 12

3
E.
14]  hyp = (B} +1 =2 |3
[14] r i (E.]z

[151 Uunbond = owc( hl J(ZJ = cchS
hew JAO

in which 6 and o’ are the slab bending stress of a single
layer and the equivalent single layer to be determined by
eq. [1], respectively. Also note that the multiplication facter
of hy/ltg is necessary to adjust the stress proportionally ac-
cording to Figs. 36 and 3c.

Stress adjustment due to a second bonded subbase
layer

As for the case of two bonded layers, considering a cross
section of the slab-subbase system as an equivalent single
layer, its corresponding strain and stress refationships are
shown in Fig. 4. The location of the neutral axis is defined at
a distance x from the bottom of the second layer:

Y= EhE + 2E by + Eyh

[16]
2(E|h| + Ezhz)

()

G-

in which o and P are the distances of the neutral axis from
the middle surfaces of the second layer and the top layer, re-
spectively (@ = x" — hy/2, f' = h, + h/2 — x').

By converting this system inte an equivalent unbonded
system as shown in Fig. 5, the equivalent top layer thickness

(hy) and bottom layer thickness (h r}  become
R = 3Ynf +12B7  and hy = Y3 +12h,0% . Similarly,

using the equivalent moment of inertia per unit width (7_g)
for the transformed section with modulus E,, the effective
thickness (4;) and the slab bending stress (Oyong) Of the two-
layer bonded system can be determined by the following ex-
pression:

3
E.

(17 hey = [hi +(?2)hgf
[

[18] Obond = GWC[MJ(EJ = GWCRS

Pere o

in which ¢ and o are the slab bending stress of a single
layer and the equivalent single layer to be determined by
eq. [1], respectively. Also note that the multiplication factor
of 2(x" — hy)/h g is necessary to adjust the stress proportion-
ally according to Figs. 54 and 55.

The applicability of the stress adjustment equations [15]
and [18] was further verified through comparison of the re-
sults of a series of ILLI-SLAB finite element runs with ex-
cellent agreements.
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Fig. 5. Transforming two bonded layers into two unbonded layers: (a) converting into two unbonded laycrs and (b) stress.
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Simplified corner stress analysis
procedures

In reality, jointed concrete pavements consist of many sin-
gle finite concrete slabs jointed by aggregate interlock,
dowel bars, or tie bars, and traffic loading may be in the
forms of dual wheel, tandem axle, or tridem axle. A widened
outer lane may also shift the wheel loading away from
Westergaard’s critical loading locations. A tied concrete
shoulder or a second bonded or unbonded Iayer may also re-
sult in different degrees of stress reductions. To account for
these effects under the loading-only condition, the following
relationship has been identified through many intensive fi-
nite element studies for a constant Poisson’s ratio (usually
i = 0.15) (Lee and Lee 1996; Lee 1993; Lee et al. 1996):

[19] oh?‘suzyﬁ,
P P P

where ¢ and g are slab bending stress and vertical subgrade
stress, respectively, [FL?]; § is the slab deflection, [L]; P is
the wheel load, [F]; % is the thickness of the slab, [L]; a is
the radius of the applied load, [L]; / is the radius of relative
stiffness of the slab-subgrade system, [L]; k is the modulus
of subgrade reaction, [FL™); L and W are the length and
width of the finite stab, respectively, [L}; s is the transverse
wheel spacing, [L}; 1 is the longitudinal axle spacing, [L]; Dy
is the offset distance between the outer face of the wheel and
the slab edge, [L}; AGG is the aggregate interlock factor,
[FL2]; g is the effective thickness of two unbonded layers,
[L); &y and h, are the thickness of the top slab and of the
bottom slab, respectively, [L]; and E, and E, are the concrete
modulus of the top slab and of the bottom slab, respectively,
[FL ?}. Note that the variables in both sides of the expres-
sion are all dimensionless.

Since no thermal curling effect was considered in the
above relationship, the assumption of full contact at the
slab—subgrade interface and the principle of superposition
may be applied to the analyses. Thus, the above relationship
can be broken down to a series of simple analyses for each
individual effect. The adjustment factors have been sepa-
rately developed by Lee and Lee (1996) for stress reduction
due to each different corner loading condition and are sum-
marized in Table 2 for completeness of the discussion.

(b

Consequently, the following eguation was proposed Lo ac-
count for the combined effects of different material proper-
ties, finite slab sizes, gear configurations, and environmental
effects (e.g., temperature differentials) for corner stress esti-
mations (Lee and Lee 1996; Lee et al. 1996):

[20} o, = UWR|R2R3R4R5 + RTUCO

where o, is the corner stress prediction, [FL2]; GCye 18
Westergaard’s closed-form corner stress solution as given in
eq. [1], [FL"2]; o, is Westergaard’s interior curling stress for
an infinite slab shown in eq. {3], [FL?]; R, is the adjustment
factor for different gear configurations, including dual-
wheel, tandem axle, and tridem axle; R, = R,, or Ryy; Ry, is
the adjustment factor for finite slab Jength and width for the
loading-only condition, i.e., Case I; Ry, is the adjustment
factor for finite slab length and width for the condition of
loading plus curling but AT = 0 (o allow partial contact at
the slab-subgrade- interface, i.e., Case II; Ry is the adjust-
ment factor for a tied concrete shoulder; R, is the adjustment
factor for a widened outer lane; R; is the adjustment factor
for a bonded/unbonded second layer using eqgs. [15] and
[18); and Ry is the adjustment factor for the combined effect
of loading plus nighttime curling, i.e., Case IHI; also note
that the adjustment factors Ry and Ry, should be used to-
gether for higher accuracy.

Development of the ILLISTRS program

To facilitate practical trial applications of the proposed
simplified corner stress analysis procedures, a window-based
computer program (ILLISTRS) was developed using
Microsoft Visual Basic software package (Microsoft Taiwan
Corp. 1995). The ILLISTRS program is a complete revision
of the TKUPAV program (Lee 1999) for stress analysis with
better control of graphical interfaces, selection menus, I/O
file managements, and command buttons for efficiency and
consistency. Both the English version and the Chinese ver-
sion of the program are available at the lollowing Web site:
hitp.//teg.ce.tku.edu.tw. Furthermore, since all the mechanis-
tic variables used in the proposed models are dimensionally
correct, the program can use both the imperial system and
the metric system (SI). Example screens of the ILLISTRS
program are shown in Fig. 6.

Discussions

The proposed stress analysis procedures follow a similar
approach adopted by the NCHRP 1-26 report (Thompson et
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Table 2. Additional prediction models for corner stress adjustments (after Lee and Lee 1996).

585

Dual wheel
(single axle)}

Tandem axle
(single wheel)

Tridem axle
(single wheel)

Tied concrete shouider

Widened outer lanc

B ]

R, = 0.6028 + 0.1333¢, + 0.00687d,

_ 10548 + 0.861(A1) + 0.208(A1)2 + 0.0176(A1)'  if Al € 2.0
' 712963 + 4.594(A1) + 2.24%A1? + 0.40%A1Y if A1 > 2.0
_J-0382-036442) ifA2s 004
2711109+ 39.675(A2)  iFA2>-0.04
Al = ~0.986x1 + 0.00507x2 + 0.164x3 ~ 0.0121x4
A2 = 00412x1 - 0.918x2 + 0.393x3 + 0.00:29x4
X=1[xl,x2 23, x4)=5 2 %@ 1
{I"1'1? 7 a
Limits: 0.05 £ a/l €04, 0< s/l 2 4
Same as the above equations; but
t a ta
X= x], 2,13,):4 By, 3, —
[t x ] [l '
Limits: 0.05 € al < 04,0< ¢l < 4
Ry = 0.4468 + 0.1679,
_ |-0.154 + 0.346(A1)? + 0.0986(A1)? + D.OIDN(A3Y  if Al < -2.5
"7 ]3.169 + 5.426(A1) + 2.880(A1) + 0.528(A1)} if Al > -2.5
Al = —0.9999x1 + 0.00576x2 — 0.0122x3
X = {xl, x2, x3] = [1, E, £
'l a
Limits: 005 S all €04, 05 i < 4
Ry = 0.7543 + 0.1887D, + 0.01840,
if Al < -2.55

"Thoaa s 0.154(A1) + 0.760{A1)? + 0.965(A1) + 0.212(AIY

{:2.940 +15.138(A1) + 5.305(A1)2 + 0.604(A1Y
@y = 0.324 + 7.064A2) + 7.003(A2)°

Al = —0.531x1 + 0.636x2 — 0.560x3 + 0.00192x4

A2 = —0.176x1 — 0.682x2 + 0.710x3 + 0.00639x4

X = [x1, 22, 53, x4] = [LAGG. % (LAGG)a (LAGG”]

i a

where LAGG = Iog,o(l + AGG)

Kl
Ry = 0.4429 + 0.1853®, + 0.0335®,

_ |o.786 + 1.434A1) + 0.463(A1) + 0053141} i AL< -1
' {3.144 + B.390(A1) + T.674(A1) + 2.667(AlY if Al > -]
~0.581+ 4.406(A2) + 16.204(A2  if A2 <Ol
{—0.408 + 4.209(A2) ifAZ> 0.1

Al = -0.780x1 - 0.0597x2 + 0.662x3 - (0.00333x4
A2 = 0.0524x1 - 0.781x2 + 0.622x3 — 0.00737x4

X =[x1, x2, x3, x4]) = (_l—)ﬂ,g Dya _?Q)

Limits: 0.05 < a/l £ 04, 0< Dyl < 4

q =

if Al > -2.55

i

- . al. 1992). The ILLI-CONC program can be used to calculate
& the slab edge stress for different axle load configurations.
B Nevertheless, “to estimate the combined stress due to load
& and temperature curling, some problems were encountered
@l in analyzing the data using dimensional analysis”. This pa-
g per enhanced the approach by resolving the dimensional

B

analysis issue and providing a more complete treatment of
the stress analysis at the slab corner. Stress adjustment fac-
tors (R), ranging from O to slightly greater than or equal to
1.0, are necessary when more practical pavement conditions
such as finite slab sizes, different wheel load configurations,
a widened outer lane, a second bonded or unbonded layer,
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Fig. 6. Sample screens of the ILLISTRS program for stress analysis.

ner Stress Analysis
Original Data

n

tion (Wheel-Axle) : Dual-Single

Axle Load, P (kH) = B®

Tire Pressure, p (kPa) - 689.00

Spacing in Pual Wheels, s (cm) = 30.50

Longitudinal wheel Spacing, t (cm) = 127.80

Transverse Wheel Spacing, d (cm) - 223.50

tayer : One Layer

Slab (1st tLayer) Thickness, h1 (cm) = 24.10

$1ab {1st Layer) Modulus, Et (kPa} =~ 27560000.0

Slab (1st Layer) Unit Welght, 1 (kg/m"3) = 2y10. BUB\

Stab (1st Layer) Possion Ratio, o1 = 8.15

Slab tength, L {(m) = b.57

Slab Wedght, W (m) = 3.66 .

Subgrade Modulus, K (kPasmm) = 35.23

Tied Contrete Shoulder : Ho

Widened Outer Lane : HNo

Critical Temperature DifFerential, AT (oC) ~ 0.08

Thernal Coefficient, alpha (/0C) - 0.60000v9
LYY

Stress Analysis Hesults

L2 2l = LA L L
InFinite Slab Stress (kPa) = 1233.1

$lab Size Effect Factor = 1.08&

Tied Concrete Shoulder Factor = 1.008

Widened Outer Lane Factor = 1,000

Second tayer Facter = 1.040
Loading Stress Only (kP3) = 1237.9

. |n,onuunss
I nK rI. .

(‘nnrn'l I
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and thermal curling are considered. In reality, however, the
presence of built-in curling at the time of construction may
also have a significant effect on subsequent cracking.
Readers should refer to other literature for a better under-
standing of such effects.

Conclusions

An alternative procedure for the determination of the criti-
cal corner stresses of jointed concrete pavements was devel-
oped in this study. The effects of a finite slab size, different
wheel configurations, a widened outer lane, a tied concrete
shoulder, a second bended or unbonded layer, and thermal
curling due to a linear temperature differential were consid-
ered. Specifically, the corner stress of a concrete slab due to
the individual and combination effects of loading and night-
time curling was analyzed. A well-known slab-on-grade fi-
nite element program (ILLI-SLAB) was used for the
analysis. A linear temperature differential across the slab
thickness and a dense liquid foundation were assumed. The
following conclusions and recommendations were drawn
from this study:

1. The resulting minor principal (tensile) stresses of the
ILLI-SLAB model occurring at the top of the slab cor-
ner favorably agree with Westergaard’s closed-form so-
lutions.

g ||| €5 5: m o || Qn.hmmmumm | PROPMON for WINDOWS _|[e TLLISTRS Stess Anaiyes .

2.

4,

6.

[e¢nEaBoR TEnn

Additional tensile stresses may be induced at the top of
the slab corner due to nighttime curling condition. Thus,
the most criticat corner stress condition due to the com-
bination effects of loading and nighttime curling was
considered.

The structural response characteristics of a slab comer
were first investigated. The expected location of the
maximum combined stresses due to corner loading plus
curling was found within the Westergaard’s location and
the center of the slab along the corner angle bisector.
The corner stress along the line of a 1/4 circle centered
at the very corner of the slab also shows about the same
magnitude at most locations, which may help to explain
the mechanism of the occurrence of corner breaks.
Based on the dimensionless mechanistic variables iden-
tified, a series of finite element factorial runs over a
wide range of pavement designs was carefully selected
and conducted. The resulting ILLI-SLAB corner
stresses were compared with theoretical Westergaard so-
lutions, and adjustment factors (R} were introduced to
account for this discrepancy. Prediction equations for
stress adjustments were developed using a modern re-
gression technique (projection pursuit regression).

The critical location of minor principal stress may
change from case to case due to the combination effect
of loading plus thermal curling. The possibility of incor-
porating the location of critical stress occurrence inte
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the process of stress estimation should be further inves-
tigated.

7. A simplified corner stress analysis procedure was pro-
posed and implemented in a user-friendly computer pro-
gram (ILLISTRS) to facilitate instant stress estimations
and practical trial applications.

8 Since all the mechanistic variables are dimensionless,
the proposed prediction models can be utilized for both
the U.S. customary system and the metric system.
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List of symbols

a radius of applied load, [L]
AGG aggregate interiock factor, [FLY
a,x lengths of projections
ay. 4y, -, d,, direction vectors
I Afinite slab width or length, [L]
Cy. C; curling stress coefficients for the desired and
perpendicular directions
relative deflection stiffness due to self-weight
of concrete slab and possible loss of subgrade
support
D, relative deflection stiffness due to external
wheel load and loss of subgrade support
Dy offset distance between the outer face of the
wheel and the slab edge, [L]
E' modulus of elasticity of the concrete slab, {(FL2]

Dy
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concrete modulus of the top and the bottom
slab, [FL?]

function of aff, L/, and Wi

functions for curling alone and curling pius
loading, respectively

thickness of the slab, [L]

effective thickness of a two-layer system, [L]
thickness of the top and the bottom slab, [L]
equivalent top-tayer thickness and bottom-
layer thickness, [L}

equivalent moment of inertia of a unit-width
section with modulus E), [LY]

modulus of subgrade reaction, [FL—3]

radius of relative stiffness, (L]

finite slab lengih, [L]

total bending moment of a two-layer system
per unit width, {F]

lire pressure, [FL-Y)

{otal applied wheel load, [F]

stress adjustment factor

adjustment factor for the combined effect of
loading plus nighttime curling (Case I1I) (note
that adjustment factors Ry and Ry, should be
used together for higher accuracy)

adjustment factor for different gear configura-
tions

Ra or Ry .

adjustment factor for finite slab length and
width for loading-only condition (Case I)
adjustment factor for finite slab length and
width for the condition of loading plus curling
but AT = 0 to allow partial contact at slab—
subgrade interface (Case II) )

adjustment factor for a tied concrete shoulder
adjustment factor for a widened outer lane
adjustment factor for a bonded/unbonded sec-
ond layer

5 transverse wheel spacing, [L)]

longitudinal axle spacing, (L)
finite slab width, [L}

o'.unbond » Shond
Cwe

o’

Ty, 02

$ulanx)

Can. J. Civ. Eng. Vol. 29, 200

location of the neutral axis at a distance fro:
the bottom of the second layer, [L.]

vector of predictor variables, x = (x;, xy, -
xp)T

distance to the point of maximum stress alon
the corner angle bisector

expected (or mean) value of response variabl
thermal expansion coefficient, [T~}

distances of the neutral axis from the middl
surfaces of the second layer and the top laye:
respectively, [L]

regression coefficient

unit weight of the concrete stab, [FL~?]
linear temperature differential through the slal
thickness, [T]

slab deflection, [L] )

critical corner deflection, [L]

residual or random error

Poisson’s ratio of the concrete

slab bending stress and vertical subgrad
stress, respectively, {FL2}

corner stress prediction, {FL"2]

edge and interior curling stresses, respectively
[FL2]

Bradbury’s maximum curling stress, [FL 2]
Westergaard’s interior curling stress for an infi
nite skab, [FL-2]

slab bending siress of two-layer unbonded an«
bonded systems, [FL-2}

Westergaard's closed-form comer stress solu
tion, [FL™?}

slab bending stress of equivalent single layer
(FL%}

top-tayer and bottom-layer stresses, respec
tively, (FL™?)

nonparametric transformation functions of the
projected lengths a,:':x

Note that [F], [L], and [T] represent the primary dimensions fo
force, length, and temperature, respectively,
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