

Introduction

- Conventional FAA Design Procedure
 Plate theory
- Westergaard edge stress
- LEDFAA Design Procedure

 Multi-Layered Linear Elastic Theory
- Question of B-777 Airplanes
 Unduly Conservative
- Reevaluate Rigid Airfield Pavements Design Procedure

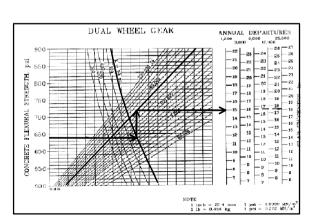
rocedure

Research Approach

- Reevaluate Pass-to-Coverage Ratio Concept
- Estimation of Edge Stress for Design
- Conversion of Different Aircraft Types and Departures
- Fatigue Relationship and Thickness Design Criteria
- Investigation of Tentative Modification Alternatives
- Determination of Equivalent Stress Factor
- Alternative Structural Deterioration Relationship

Conventional FAA Design Method

- The Plate Theory & Westergaard Edge Stresses
- Pass-to-Coverage Ratio (P/C)
- Design Aircraft & Conversion Factors
- Fatigue Relationship


 Coverages & Basic Thickness

Design Aircraft & Conversion Factors

To Convert From	То	Multiply Departures by
single wheel	dual wheel	0.8
single wheel	dual tandem	0.5
dual wheel	dual tandem	0.6
double dual tandem	dual tandem	1.0
dual tandem	single wheel	2.0
dual tandem	dual wheel	1.7
dual wheel	single wheel	1.3
double dual tandem	dual wheel	1.7

Reevaluate P/C Ratio Concept

- Effect: Edge of a tire at 0 = Tire centerline at 0
- Extended to Multi-Wheels
- Reevaluated the P/C Concept

Coverages =
$$\int_{\frac{\pi}{2}}^{\frac{W}{2}} P_{i}(x) dx \approx (C_{i})(W_{i})$$

$$P(x) = \frac{1}{2} e^{-\frac{x^{2}}{2}(\frac{x-x}{T_{i}})^{2}}$$

Aircraft Type	FAA P/C Ratio	Calculated P/C Ratio	Aircraft Type	FAA P/C Ratio	Calculated P/C Ratio
SINGLE WH-30	5.18	6.22	C-130	4.15	4.58
SINGLE WH-45		5.56	L-1011	3.62	3.40
SINGLE WH-60		5.20	A-300-B2	3.51	3.45
SINGLE WH-75		4.97	A-300-B4	3.45	3.57
DUAL WH-50	3.48	3.71	B-757	3.88	3.90
DUAL WH-75		3.57	B-767	3.9	3.89
DUAL WH-100		3.53	DC-10-10	3.64	3.80
DUAL WH-150		3.24	DC-10-30	3.38	3.54
DUAL WH-200		3.25	DC-10-30Belly		2.88
DUAL TAN-100	3.68	4.55	B-747-200	3.7	3.53
DUAL TAN-200		3.73	B-747-SP		3.66
DUAL TAN-300		3.34	B-777-200A		4.21
DUAL TAN-400		3.14	B-777-200B	N/A	4.21
			B-777-200C		3.97

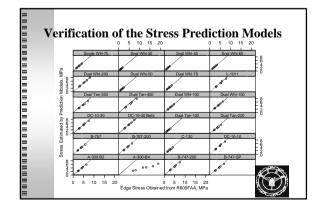
- Wheel spacing and tire width obtained from LEDFA
- The standard deviation is assumed as 77.5 cm.

Stress Analysis of Conventional FAA Design Method

- Westergaard Critical Edge Stresses
- Pickett and Ray's Influence Charts
- Analysis of B-777 Airplanes
 Unduly Conservative

$$\mathcal{T}_{e} = \frac{P}{h^{2}} \left[RC0 + RC1 \times \ln(3) + RC2 \times (\ln(3))^{2} \right]$$

• Only Applicable to U.S. Customary System


Estimation of Critical Edge Stress

$$f_e = f_{we} * R_1 * R_2 * R_3 * R_4 * R_5 + f_{ce} * R_T$$

- •R₁: Gear configurations adjustment factor
- •R₂: Finite slab size adjustment factor
- •R₃: Concrete shoulder adjustment factor
- $ullet R_4$: Widened outer lane adjustment factor
- •R₅: Second layer adjustment factor

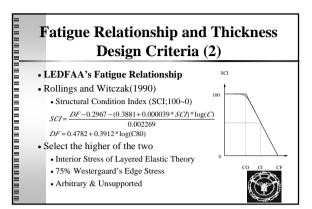
(Ref: Lee, et al., 1997)

Conversion of Different Aircraft Types and Departures

- Conversion Factors
 - Conversion to equivalent annual departures of the design aircraft
 - "Arbitrary and Unverified" (Ahlvin 1991, p. 10-9)

 $\log R_1 = \log R_2 \times \sqrt{\frac{W^2}{W_0}}$

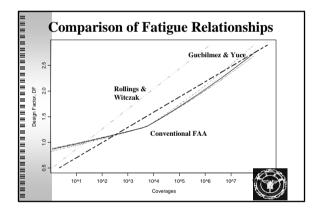
- Cumulative Damage Factor (CDF) in LEDFAA
 - •Conversion is no longer necessary



Fatigue Relationship and Thickness Design Criteria (1)

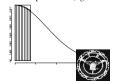
- Conventional FAA Design Procedure
- · Basic Thickness
- Design Factor = 1.3 $\sqrt{\epsilon} = \frac{1.3*0.5}{1.3*0.5}$
- Fatigue Relationship $h_i = \left[\left(RC0 + RC1 \times \ln(1) + RC2 \times (\ln(1))^2 \right) \times \left(\frac{P}{f_0} \right) \right]^2$

 $RH = \begin{cases} 1 + 0.15603*(\log(C) - 3.69897) & \text{if } C > 5000 \\ 1 + 0.07058*(\log(C) - 3.69897) & \text{if } C < 5000 \end{cases}$


Fatigue Relationship and Thickness Design Criteria (3)

- Gucbilmez and Yuce's Fatigue Relationship
- Re-analyzed Corps of Engineers Full-size Test Data
- Westergaard edge stress
- DF = $S_c / (0.75 * \sigma_e)$

 $SCI = \frac{100*\log(C) - 320.61558DF + 56.4417}{0.20903DF - 0.99336}$


 $DF = 0.40289 + 0.29644 * \log(C80)$

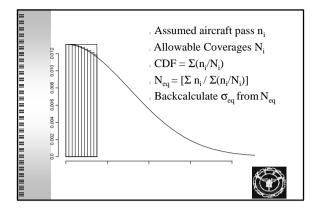
Investigation of Tentative Modification Alternatives

- P/C Concept Assumed:
 - \bullet Effect: the edge of a tire at 0= the tire centerline at 0
 - $\begin{array}{ll} \bullet \mbox{ Maximum tensile stress should be used throughout when the centerline location of the lateral wheel load placement (L_c) falls within this tire print area \\ \mbox{3} \end{array}$
- Very crude & conservative application of CDF
- Prediction model for stress reduction due to D_o effect

Re-analyze Corps of Engineers Full-size Test Data

• Fatigue Relationships developed for CO, CI & CF

Tentative Fatigue Equations	SSE	\mathbb{R}^2	N
DF = 0.4561 + 0.2928*log(CO)	0.108	0.822	24
DF = 0.3470 + 0.3013*log(CI)	0.125	0.818	36
DF = 0.1760 + 0.3119*log(CF)	0.122	0.775	24
DF = 0.3171 + 0.2894*log(PO)	0.114	0.804	24
DF = 0.2124 + 0.2953*log(PI)	0.131	0.800	36
DF = 0.0338 + 0.3074*log(PF)	0.127	0.755	24


Similar to Gucbilmez and Yuce's Equation

Determination of Equivalent Stress Factor

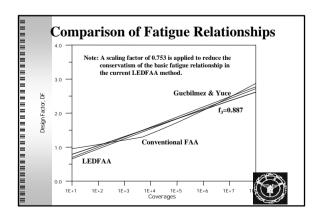
- Equivalent Stress Factor (f₃)
- Equivalent Damage Effect
- Cumulative Fatigue Damage $\Sigma(n_i/N_i)$
- Stress Prediction Models $\sigma_e = \sigma_{we} * R_1 * R_4$
 - \bullet $\sigma_{\rm we}$: Westergaard edge stress
 - \bullet R_1 : Gear configurations adjustment factor
 - \bullet R_4 : Widened outer lane adjustment factor
- DF = $S_c / (0.75 * \sigma_e)$

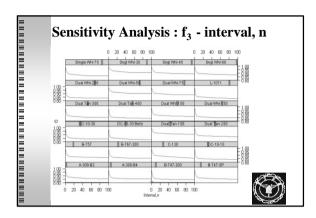
Item	\mathbf{f}_3	Item	\mathbf{f}_3	Item	\mathbf{f}_3	Item	\mathbf{f}_3
A1.60	0.808	K2,100	0.859	U1.60	0.819	72	0.912
B2,66L	0.826	N1.86	0.840	E-6	0.872	73	0.901
B1.66L	0.796	N2.86	0.809	M-1	0.873	1-C5	0.833
C2.66S	0.826	O1.106	0.862	M-2	0.892	2-DT	0.873
C1.66S	0.795	O2.106	0.830	-	0.810	3-DT	0.883
D1.66	0.796	P1.812	0.835	59	0.887	2-C5	0.834
E2.66M	0.835	P2.812	0.806	60	0.856	4-DT	0.865
E1.66M	0.806	Q1.102	0.865	61	0.873	3-200	0.892
F1.80	0.835	Q2.102	0.833	62	0.888	4-200	0.891

- Gucbilmez and Yuce (1995)
- •Assuming $1.273(\pi a^2) = 1.6 (W_t)^2$

A	ternative Deterio	oratio	n Rela	ntionship
•E	quivalent Design Factor	(EDF) =	$S_{c}/(0.7)$	$75 * \sigma_e * f_3$
	Tentative Fatigue Equations	SSE	R ²	N
	EDF = 0.6421 + 0.2920*log(CO)	0.119	0.793	24
	EDF = 0.5266 + 0.3037*log(CI)	0.136	0.792	36
	EDF = 0.3697 + 0.3086*log(CF)	0.134	0.735	24
	EDF = 0.5056 + 0.2879*log(PO)	0.125	0.771	24
	EDF = 0.3911 + 0.2976*log(PI)	0.142	0.774	36
	EDF = 0.2319 + 0.3032*log(PF)	0.140	0.712	2 05 7

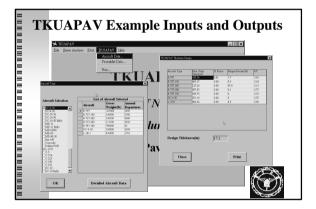
Proposed Fatigue Relationship

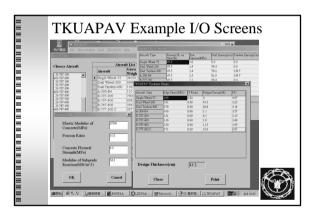

$$SCI = \frac{100 * \log(C) - 324.044 * EDF + 119.799}{0.184217 * EDF - 1.00098}$$


$$EDF = 0.5900 + 0.2952 * log(C80)$$

$$DF = f_3 * [0.5900 + 0.2952 * log(C80)]$$

- C80 is the coverages to reduce the pavement SCI from 100 to 80
- C is the coverage level at which the SCI is to be calculated





Implementation of the Proposed Approach

- Application of the P/C & CDF Concept
- Prediction Models for Critical Edge Stress
- Application of Equivalent Stress Factor (f₃)
- Alternative Fatigue Relationship
- Development of a User-friendly Computer Program (TKUAPAV) Using VB5.0

Conclusions (1)

- Reexamined the P/C Concept
- Proposed and Verified the Stress Prediction Models
 - Dimensionally Correct: Metric and English Systems
 - Other features: finite slab size, second layer, curling, etc.
- Identified the Problems and Difficulties for the Conversions of Aircraft Types and Departures
- The CDF Concept Should Be Used
- Investigated Various Fatigue Relationships & Thickness Design Criteria

Conclusions (2)

- A scaling factor of 0.753 is applied to reduce the conservatism of the basic fatigue relationship in the current LEDFAA method
- Reanalyzed the Corps of Engineers traffic data
- Introduced an equivalent stress factor (f₃) & EDF
- f₃ factor decreases when tire width (W_t) increases
- Proposed an alternative fatigue relationship
- Developed a user-friendly PC program (TKUAPAV)
- Further investigations are warranted

Acknowledgments

- Research work was sponsored by National Science Council, Taiwan, Republic of China
- Very Precious Literature and Comments by:
 - Mr. Gordon F. Hayhoe, Galaxy Scientific Corporation
 - Mr. Richard G. Ahlvin, US Army Corps of Engineers, Waterways Experiment Station

THANKS FOR YOUR ATTENTION!

Ying-Haur Lee, Ph.D.

Associate Professor of Civil Engineering

Tamkang University, Taiwan

Republic of China

http://teg.ce.tku.edu.tw/