
 
 

 

  
Abstract—Multilevel data are very common in many fields. 

Because of its hierarchical data structure, multilevel data are 
often analyzed using Linear Mixed-Effects (LME) models. The 
exploratory analysis, statistical modeling, and the examination 
of model-fit of LME models are more complicated than those of 
standard multiple regressions. A systematic modeling approach 
using visual-graphical techniques and LME models was 
proposed and demonstrated using the original AASHO road 
test flexible pavement data. The proposed approach including 
exploring the growth patterns at both group and individual 
levels, identifying the important predictors and unusual 
subjects, choosing suitable statistical models, selecting a 
preliminary mean structure, selecting a random structure, 
selecting a residual covariance structure, model reduction, and 
the examination of the model fit was further discussed.  
 

Index Terms—Multilevel data, linear mixed-effects models, 
flexible pavement, AASHO road test.  

I. INTRODUCTION 
Longitudinal data are used in the research on growth, 

development, and change. Such data consist of 
measurements on the same subjects repeatedly over time. To 
describe the pattern of individual growth, make predictions, 
and gain more insight into the underlying causal relationships 
related to developmental pattern requires studying the 
structure of measurements taken on different occasions [1]. 
Multivariate analysis of variance (MANOVA), repeated 
measures ANOVA, and standard multiple regression 
methods have historically been the most widely used tools for 
analyzing longitudinal data. Polynomial functions are usually 
employed to model individual growth patterns.  

Classical longitudinal data analysis relies on balanced 
designs where each individual is measured at the same time 
(i.e., no missing observations). MANOVA, which imposes 
no constraints on residual covariance matrix, is one common 
approach in analyzing longitudinal data. However, an 
unconstrained residual covariance structure is not efficient if 
the residual errors indeed possess a certain structure, 
especially when this structure is often of interest in 
longitudinal studies. Repeated measures ANOVA have the 
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assumption of sphericity. It is too restrictive for longitudinal 
data because such data often exhibit larger correlations 
between nearby measurement than between measurements 
that are far apart. The variance and covariance of the 
within-subject errors also vary over time. The sphericity 
assumption is inappropriate in longitudinal studies if residual 
errors exhibit heterogeneity and dependence.   

In longitudinal studies, the focus is on determining 
whether subjects respond differently under different 
treatment conditions or at different time points. The errors in 
longitudinal data often exhibit heterogeneity and dependence, 
which call for structured covariance models. Longitudinal 
data typically possess a hierarchical structure that the 
repeated measurements are nested within an individual. 
While the repeated measures are the first level, the individual 
is the second-level unit and groups of individuals are higher 
level units [2]. Traditional regression analysis and repeated 
measures ANOVA fail to deal with these two major 
characteristics of longitudinal data, i.e. heterogeneity and 
dependence. 

Linear Mixed-Effects (LME) models are an alternative for 
analyzing longitudinal data. These models can be applied to 
data where the number and the spacing of occasions vary 
across individuals and the number of occasions is large. LME 
models can also be used for continuous time. LME models 
are more flexible than MANOVA in that they do not require 
an equal number of occasions for all individuals or even the 
same occasions. Moreover, varied covariance structures can 
be imposed on the residuals based on the nature of the data. 
Thus, LME models are well suited for longitudinal data that 
have variable occasion time, unbalanced data structure, and 
constrained covariance model for residual errors. 

A systematic modeling approach using visual-graphical 
techniques and LME models was proposed and demonstrated 
using the original AASHO road test flexible pavement data 
[3]. The proposed approach including characterizing the 
growth patterns at both group and individual levels, 
identifying the important predictors and unusual subjects, 
choosing suitable statistical models, selecting random-effects 
structures, suggesting possible residuals covariance models, 
and examining the model-fits will be further discussed [4-6].  

II. METHODS 
Hierarchical linear models allow researchers to analyze 

hierarchically nested data with two or more levels. A 
two-level hierarchical linear model consists of two 
submodels: individual-level (level-1) and group-level 
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(level-2). The parameters in a group-level model specify the 
unknown distribution of individual-level parameters. The 
intercept and slopes at individual-level can be specified as 
random. Substituting the level-2 equations for the slopes into 
the level-1 model yields a linear mixed-effects (LME) model. 
LME models are mixed-effects models in which both fixed 
and random effects occur linearly in the model function [7]. 

In a typical hierarchical linear model, the individual is the 
level-1 unit in the hierarchy. An individual has a series of 
measurements at different time points in longitudinal studies 
[8]. When modeling longitudinal data, the repeated 
measurements are the level-1 units (i.e., a separate level 
below individuals). The individual is the second-level unit, 
and more levels can be added for possible group structures 
[2]. The basic model at the lowest level, also regarded as 
repeated-measures level, for the application of hierarchical 
linear model in longitudinal data can be formulated as: 

tjtj2j10jY       :1-Level rxctjjtj +++= βββ  (1) 
Where Ytj is the measure for an individual j at time t, c is 

the time variable indicating the time of measurement for this 
individual, xtj is the time-varying covariate, and rtj is the 
residual error term. 

jjj uW 0101000      :2-Level ++= γγβ   

jjj uW 1111101                     ++= γγβ  (2) 

jjj uW 1121202                     ++= γγβ    
In this level-2 equation, W is the time-invariant covariate 

for this individual. After substituting level-2 equations into 
level-1, the combined or the linear mixed-effects model is: 

tjtjjtjjjjtj

tjjjtjtjtj

rxucuuWxγ
cWγWγxγcγγY

+++++

++++=

210121

111101201000

       
. (3)  

The level-1 model is a within-individuals model and the 
level-2 model is a between-individuals model [9]. Note that 
there is no time-invariant covariate in level-2 before 
introducing the variable W. The variance and covariance of 
the u’s are the variances and covariances of the random 
intercept and slopes. After introducing the variable W, the 
variance and the covariance of u’s are the variance and 
covariance of residual intercept and slopes after partitioning 
out the variable W. More time-invariant variables can be 
added sequentially into level-2 to get different models. The 
reduction in variance of u’s could provide an estimate of 
variance in intercepts and slopes accounted for by those W’s 
[10]. This linear mixed-effects model does not require that 
every individual must have the same number of observations 
because of possible withdrawal from study or data 
transmission errors. 

Let Ytj denotes the tth measurement on the jth individual, in 
which t = 1, 2, … ni measurements for subject j, and j = 1, 
2, … N individuals. The vector Yj is the collection of the 
observations for the jth individual. A general linear 
mixed-effects model for individual j in longitudinal analysis 
can be formulated as:  

jjjjj RUZβXY ++= , (4)  
Where Xj is a (nj×p) design matrix for the fixed effects; 

and β is a (p×1) vector of fixed-effect parameters. Zj is a 
(nj×r)design matrix for the random effects; and Uj is an (r×1) 
vector of random-effect parameters assumed to be 
independently distributed across individuals with a normal 

distribution, Uj ~NID(0, T). The Uj vector captures the 
subject-specific mean effects as well as reflects the extra 
variability in the data. Rj  is an (nj×1) vector for the residuals. 
The within errors, Rj, are assumed normally distributed with 
mean zero and variance σ2Wj, where Wj (stands for “within”) 
is a covariance matrix with a scale factor σ2.  The matrix Wj 

can be parameterized by using a few parameters and assumed 
to have various forms, e.g., an identity matrix or the 
first-order of autoregression or moving-average process 
[11-12]. They are independent from individual to individual 
and are independent of random effects, Uj. 

Other choices for variance-covariance structures that 
involve correlated within-subject errors have been proposed. 
Using appropriate covariance structures can increase 
efficiency and produced valid standard errors. The choice 
among covariance depends upon data structures, 
subject-related theories and available computer packages 
(Louis, 1988). In some cases, heterogeneous error variances 
can be employed in the model because the variances in this 
model are allowed to increase or decrease with time. The 
assumption of common variance shared by all individuals is 
removed [11, 13]. There are some possible forms for 
modeling heterogeneity for within-subject errors. For 
example, a variance model with different variances for each 
level of a stratification variable xij is appropriate if the data 
shows that different variances appear for the levels of the 
stratification variable. A variance model with power function 
can be used if the within-subject variability is to increase with 
some power of the absolute value of a covariate xij.  

LME models generally assume that level-1 residual errors 
are uncorrelated over time. This assumption is questionable 
for longitudinal data that have observations closely spaced in 
time. There typically exists dependence between adjacent 
observations. This is called serial correlation and it tends to 
diminish as the time between observations increases. Serial 
correlation is incorporated into models for time-series data. 
Serial correlation is part of the error structure and if it is 
present, it must be part of the model for producing proper 
analysis [11]. If the dependent within-subject errors are 
permitted, the choice of the model to represent the 
dependence needs careful consideration. It would be 
preferable to incorporate as much individual-specific 
structure as possible before introducing a serial correlation 
structure into within-subject errors [14]. For modeling the 
dependency of within-subject errors, autoregressive models, 
moving average models, and a mixture of 
autoregressive-moving average models may be used. 

III. DATA DESCRIPTION 
The AASHO road test was a large-scale highway research 

project conducted near Ottawa, Illinois from 1958 to 1960, and 
has had by far the largest impact on the history of pavement 
performance analysis. The test consisted of 6 loops, numbered 1 
through 6. Each loop was a segment of a four-lane divided 
highway and centerlines divided the pavements into inner and 
outer lanes, called lane 1 and lane 2. Pavement designs varied 
from section to section. The axle loads on each loop and lane are 
listed in Table 1. All sections had been subjected to almost the 
same number of axle load applications on any given date. 



 
 

 

Pavement performance data was collected based on the trend of 
the pavement serviceability index at 2-week interval. The last 
day of each 2-week period was called an “index day.” Index 
days were numbered sequentially from 1 (November 3, 1958) to 
55 (November 30, 1960) [3, 15].  

 
Table 1 Magnitude of Axle Loads on Each Loop and Lane 

Loop Lane 

1 2 3 4 5 6 

1 0 2-S 12-S 18-S 22.4-S 30-S 

2 0 6-S 24-T 32-T 40-T 48-T 

Note: The axle loads are in thousand pounds (kips); S stands for 
single axle; T stands for tandem axle. 

 
Empirical relationships between pavement thickness, load 

magnitude, axle type, accumulated axle load applications, and 
performance trends for both flexible and rigid pavements were 
developed after the completion of the road test. Several 
combinations of certain rules, mathematical transformations, 
analyses of variance, graphs, and linear regression techniques 
were utilized in the modeling process to develop such 
empirical relationships. A load equivalence factor was then 
established to convert different configurations of load 
applications to standard 18-kip equivalent single-axle loads 
(ESAL). This ESAL concept has been adopted 
internationally since then. As pavement design evolves from 
traditional empirically based methods toward 
mechanistic-empirical, the ESAL concept used for traffic 
loads estimation is no longer adopted in the recommended 
Mechanistic-Empirical Pavement Design Guide (MEPDG) 
[16], although many researchers have argued that it is 
urgently in need of reconsideration [3, 17-18]. 

During the road test, it was found that the damage rate was 
relatively low in winter but was relatively high in spring for 
flexible pavements. Therefore, load applications were 
adjusted by “seasonal weighting function” such that a better 
“weighted” flexible pavement equation was developed. Lee 
[1993] has pointed out that the error variance increases when 
the predicted number of weighted load repetitions (W) 
increases. To serve the needs of predicting pavement 
serviceability index (PSI) after certain load applications on a 
given section, it is not uncommon that engineers would 
rearrange the original flexible pavement equation into the 
following form:  
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In which the regression statistics are: R2=0.212, 
SEE=0.622, N=1083. Fig. 1 shows the predicted versus 
actual PSI values. Note that PSI ranges from 0 to 5 (0-1 for 
very poor; 1-2 for poor; 2-3 for fair; 3-4 for good; and 4-5 for 
very good conditions).  D1 is the surface thickness (in.); D2 is 
the base thickness (in.); D3 is the subbase thickness (in.). 

IV. EXPLORATORY ANALYSIS  
Exploratory analysis is a technique to visualize the patterns 

of data. It is detective work of exposing data patterns relative 
to research interests. Exploratory analysis of longitudinal 
data can serve to: (a) discover as much of the information 

regarding raw data as possible rather than simply summarize 
the data; (b) highlight mean and individual growth patterns 
which are of potential research interest; as well as (c) identify 
longitudinal patterns and unusual subjects. Hence plotting 
individual curves to carefully examine the data should be 
performed first before any formal curve fitting is carried out. 
For the nature of this flexible pavement data, the exploratory 
analysis includes exploring “growth” patterns and the 
patterns regarding experimental conditions. 

A. Exploring “Growth” Patterns 
The first step, which is perhaps the best way to get a sense 

of a new data, is to visualize or plot the data. Most 
longitudinal data analyses address individual growth patterns 
over time. Thus, the first useful exploratory analysis is to plot 
the response variable against time including individual and 
overall mean profiles. Individual mean profiles, which 
summarize the aspects of response variable for each 
individual over time, can be used to examine the possibility 
of variations among individuals and to identify potential 
outliers. The overall mean profile summarizes some aspects 
of the response variable over time for all subjects and is 
helpful in identifying unusual time when significant 
differences arise.  

Fig. 2 shows the lines connecting the dependent variable 
(mean PSI) over time for each subject (loop/lane). Most 
subjects have higher mean PSIs at the beginning of the 
observation period, and they tend to decrease over time. The 
spread among the subjects is substantially smaller at the 
beginning than that at the end. In addition, there exist 
noticeable variations among subjects. The overall mean 
growth curve over time is presented in Fig. 3. The overall 
mean PSIs are larger at the beginning and decrease over time; 
and the rate of deterioration is higher at the beginning than 
that at the end.  

B. Exploring the Patterns of Experimental Conditions 
In addition to time (in terms of index day), different major 

experimental conditions may be considered. This exploratory 
analysis is intended to discover the overall and individual 
patterns of each experimental condition and their interactions 
on mean PSIs. Subsequently, the patterns of mean PSIs for 
each subject and the patterns of overall mean PSIs on each 
experimental condition and their interactions over time are 
investigated. Fig. 4 is an example plot of mean PSIs for each 
subject on different surface thickness over time. Generally 
speaking, the mean PSIs for pavements with higher surface 
thickness are higher than those with thinner surface layer. 

 
Fig. 1 Predicted versus Actual PSI 
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Fig. 2 Mean PSI for each subject (loop/lane) versus index day 
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 Fig. 3 Overall Mean PSI versus index day 
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Fig. 4 Mean PSI for each subject (loop/lane) on different 
surface thickness versus index day 

V. LINEAR-MIXED EFFECTS MODELING APPROACH 
The following proposed modeling approach is generally 

applicable to modeling multilevel longitudinal data with a 
large number of time points. Model building procedures 
including the selection of a preliminary mean structure, the 
selection of a random structure, the selection of a residual 
covariance structure, model reduction, and the examination 
of the model fit are subsequently illustrated. 

A. Selecting a Preliminary Mean Structure 
Covariance structures are used to model variation that 

cannot be explained by fixed effects and depend highly on 
the mean structures. The first step to model building is to 
remove the systematic part and remove this so that the 
variation can be examined. The dataset includes the 
following explanatory variables: thick, basethk, subasthk, 
uwtappl, FT.  In which, thick is the surface thickness (in.); 
basethk is the base thickness (in.); subasthk is the subbase 
thickness (in.); uwtappl is the unweighted applications 
(millions), and FT is monthly the freeze-thaw cycles. 

A model containing all main effects, and all the two-way, 
three-way interaction terms was first investigated. This 
model (called model-1) has the form: 
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B. Selecting a Preliminary Random Structure 
The second step is to select a set of random effects in the 

covariance structure. An appropriately specified covariance 
structure is helpful in interpreting the random variation in the 
data, achieving the efficiency of estimation, as well as 
obtaining valid inferences of the parameters in the mean 
structure of the model. In longitudinal studies, the same 
subject is repeatedly measured over time. The data collected 
from longitudinal study is a collection of correlated data. The 
within-subject errors are often heteroscedastic (i.e., having 
unequal variance), correlated, or both.  

 
1) Exploring preliminary random-effects structure  

A useful tool to explore the random-effects structure is to 
remove the mean structure from the data and use ordinary 
least square (OLS) residuals to check the need for a linear 
mixed-effects model and decide which time-varying 
covariate should be included in the random structure. 

The boxplot of residuals by subject corresponding to the fit 
of a single linear regression by using the same form of the 
preliminary level-1 model was conducted. This is the case 
when grouping structure is ignored from the hierarchy of data. 
Since the residuals are not centered around zero, there are 
considerable differences in the magnitudes of residuals 
among subjects. This indicates the need for subject effects, 
which is precisely the motivation for using linear 
mixed-effects model. Separate linear regression models were 
employed to fit each subject to explore the potential linear 
relationship.  

To assist in selecting a set of random effects to be included 
in the covariance model, the plots of mean raw residuals 
against time and the variance of residuals against time are 
useful. If only random-intercepts models hold, the residual 
has the form, 

ijjij RUe += 0
, in which U0j  is the random 

effect for intercepts and Rij is the level-1 error. If this plot 
shows constant variability over time or the curves are flat, 
then only random intercept model is needed. If 
random-intercepts-and-slopes models hold, the residual has 
the form, ++= ijjjij xUUe 110

 ijqijqj RxU ++... , where U0j is 

the random effect for the q-th slope. In the case of 
random-intercepts-and-slopes model, the plot would show 
the variability varies over time or there are some unexplained 
systematic structures in the model. One or more random 
effects, additional to random intercept, have to be added. 

 
2) Selecting a variance-covariance structure for 
random effects 

Three possible variance-covariance structures including 
general positive definite (unstructured), diagonal, and 
block-diagonal based on different assumptions were 



 
 

 

investigated. General positive-definite is a general 
covariance matrix parameterized directly in terms of 
variances and covariances. Diagonal covariance structure is 
used when random-effects are assumed independent. 
Block-diagonal matrix is employed when it is assumed that 
different sets of random effects have different variances. The 
forms of these three variance-covariance structures are given 
in equation (7). 
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Table 2 displays the model comparison of these three 
models. The unstructured model has the smallest absolute 
value of log-likelihood among them. The likelihood ratio test 
for unstructured model versus diagonal model is 168.57 with 
p-value less than 0.0001. Thus, unstructured 
variance-covariance model will be used hereafter. 

 
Table 2 Model Comparison Using Three 
Variance-Covariance Structures 

Model df AIC BIC logLik Test L.Ratio p-value

(1) Unstr 29 12910.29 13117.74 -6426.14    

(2) Diag 22 13056.52 13213.90 -6506.26 1 vs 2 160.234 < 0.0001

(3) Bk-diag 21 13060.14 13210.37 -6509.07 2 vs 3 5.621 0.0177 

 
The random effects of the preliminary level-2 model 

include intercept, uwtappl, quadratic term of uwtappl, and FT. 
The variance-covariance structure is a general 
positive-definite matrix. Putting the preliminary level-1 and 
level-2 models together, the preliminary linear-mixed-effects 
model is then: 
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  (8)  

C. Selecting a Residual Covariance Structure 
The absolute value of log-likelihood for this 

heteroscedastic model is 6273.29. The need of 
heteroscedastic model can be formally checked by using the 
likelihood ratio test, which is summarized in Table 3. The 
small p-value indicates that the heteroscedastic model 
explains the data significantly better than homoscedastic 
model. 

 
Table 3 Comparison of Heteroscedastic and Homoscedastic 
Models 

Model Df AIC BIC logLik L.Ratio p-value

Homoscedastic 29 12910.29 13117.74 -6426.14   

Heteroscedastic 34 12614.57 12857.79 -6273.29 305.71 < 0.0001

 

1) Modeling dependence  
Correlation structures are used to model dependence 

among the within-subject errors. Autoregressive model with 
order of 1, called AR(1), is the simplest and one of the most 
useful models [7]. The autocorrelation function (ACF), 
which begins autocorrelation at lag 1 and then declines 
geometrically, for AR(1) is particularly simple. 
Autocorrelation functions for autoregressive model of order 
greater than one are typically oscillating or sinusoidal 
functions and tend to damp out with increasing lag [19]. 

Thus, AR(1) may be adequate to model the dependency of 
the within-subject errors. The absolute value of 
log-likelihood for this heteroscedastic AR(1) model is 
6207.24. The estimated single correlation parameter φ is 
0.125. The heteroscedastic model (corresponding to φ = 0) is 
nested within the heteroscedastic AR(1) model. 

Likewise, the need of heteroscedastic AR(1) model can be 
checked using likelihood ratio test as given in Table 4. The 
small p-value indicates that the heteroscedastic AR(1) model 
explains the data significantly better than heteroscedastic 
model, suggesting that within-group serial correlation is 
present in the data. 

 
Table 4 Comparison of Heteroscedastic and Heteroscedastic 
AR(1) Models 

Model Df AIC BIC LogLik L.Ratio p-value

Heteroscedastic 34 12614.57 12857.79 -6273.29   

Heteroscedastic 
AR(1) 35 12484.47 12734.85 -6207.24 132.10 < 0.0001

D. Model Reduction 
After specifying the within-subject error structure, the next 

step is to check whether the random-effects can be simplified. 
It is also desirable to reduce the number of parameters in 
fixed effects in order to achieve a parsimonious model that 
can well represent the data. A likelihood ratio test statistic, 
whose sampling distribution is a mixture of two chi-squared 
distributions, is used to test the need for random-effects. The 
p-value is determined by equal weight of the p-values of a 
mixture of two chi-squared distributions. To assess the 
significance of the terms in the fixed effects, conditional 
t-tests are used. 

 
1) Reduction of random effects  

As suggested by Morrell, Pearson, and Brant [20], the 
matrix of known covariates should not have polynomial 
effect if not all hierarchically inferior terms are included. The 
same rule applies to interaction terms. Hence, significance 
tests for higher-order random effects should be performed 
first. The random effects included in the preliminary 
random-effects structure are: intercept, uwtappl, uwtappl2, 
and FT. Table 5 shows the models and the associated 
maximum log-likelihood values. The small p-value indicates 
that the preliminary random-effects structure (Model 1) 
explains the data significantly better than the others. Thus, no 
reduction of random effects is needed. 
 
 



 
 

 

Table 5 Random-Effects Models with the Associated 
Maximum Log-Likelihood Values 

Model df AIC BIC logLik Test L.Ratio p-value 

(1) Intercept, uwtappl, 
uwtappl2, FT 

35 12484.5 12734.9 -6207.2    

(2) Intercept, uwtappl, 
FT 

31 12729.6 12951.4 -6333.8 1 vs 2 132.10 < 0.0001

(3) Intercept, uwtappl, 
uwtappl2 

31 12573.5 12795.2 -6255.7 1 vs 3 96.99 < 0.0001

 
2) Reduction of fixed effects  

An adequate and appropriately specified random-effects 
structure implies efficient model-based inferences for the 
fixed effects. When considering the reduction of fixed effects, 
one model is nested within the other model and the 
random-effects structures are the same for the full and the 
reduced models. Likelihood ratio tests are appropriate for the 
model comparison. The parameter estimates, estimated 
standard errors, t-statistics and p-values for the fixed effects 
of the heteroscedastic AR(1) model are revisited. The 
heteroscedastic AR(1) model can be reduced to a more 
parsimonious model due to the existence of some 
insignificant parameter estimates. The reduction of fixed 
effects starts with removing the parameters with largest 
p-values, insignificant terms, and combining the parameters 
not changing significantly. These processes are repeated until 
no important terms have been left out of the model.  

E. Proposed Preliminary LME Model 
The final proposed preliminary linear mixed-effects model 

is listed in Table 6. The fixed-effects structures of the 
proposed model contain significant treatment effects for 
thick, basethk, subasthk, uwtappl, uwtappl^2, FT, and 
several other two-, three-, and four-way interaction terms. 
The positive parameter estimates for thick, basethk, and 
subasthk indicates that higher mean PSI values tend to occur 
on thicker pavements. The parameter estimate of uwtappl is 
negative indicating that lower PSI values for higher load 
applications.  

Furthermore, the preliminary LME model also indicates 
that: The standard error for the pavements with surface 
thickness of 1 in. or  4 in. is about 48%  or 20% higher than 
those with surface thickness of 2 in., respectively. There 
exists dependency in within-subject errors. The estimated 
single correlation parameter for the AR(1) model is 0.126. 

F. Examination of the Model Fit 
Fig. 5 depicts a plot of the population predictions (fixed), 

within-group predictions (Subject), and observed values 
versus time for the proposed preliminary LME model by 
subjects. Population predictions are obtained by setting 
random-effects to zero whereas within-group predictions use 
estimated random effects. The prediction line of the 
within-group predictions follows the observed values more 
closely indicating the proposed LME model provides better 
explanation to the data. 

VI. CONCLUSIONS 
A systematic modeling approach using visual-graphical 

techniques and LME models which is generally applicable to 
modeling multilevel longitudinal data with a large number of 

time points was proposed in this paper. The original AASHO 
road test flexible pavement data was used to illustrate the 
proposed modeling approach.  

Exploratory analysis of the data indicated that most 
subjects (loop/lane) have higher mean PSIs at the beginning 
of the observation period, and they tend to decrease over time. 
The spread among the subjects is substantially smaller at the 
beginning than that at the end. In addition, there exist 
noticeable variations among subjects. 

A preliminary LME model for PSI prediction was 
developed. The positive parameter estimates for thick, 
basethk, and subasthk indicates that higher mean PSI values 
tend to occur on thicker pavements. The parameter estimate 
of uwtappl is negative indicating that lower PSI values for 
higher load applications. The prediction line of the 
within-group predictions (Subject) follows the observed 
values more closely than that of the population predictions 
(fixed) indicating the proposed LME model provides better 
explanation to the data. 
 
Table 6 Proposed Preliminary LME Model 

        Random Effects 

 Intercept uwtappl uwtappl2 FT Residual

Standard Deviation 0.170 1.679 0.765 0.00722 0.448 

Fixed Effects 

Parameter Value Std.Error DF t-value p-value

(Intercept) 2.4969 0.0703  9423 35.51 < 0.0001

thick 0.2629 0.0122  9423 21.48 < 0.0001

basethk 0.0590 0.0066  9423 8.91 < 0.0001

subasthk 0.0386 0.0041  9423 9.37 < 0.0001

uwtappl -3.6191 0.5254  9423 -6.89 < 0.0001

uwtappl^2 1.1524 0.2481  9423 4.65 < 0.0001

FT 0.0148 0.0023  9423 6.39 < 0.0001

thick*basethk -0.0062 0.0016  9423 -3.81 < 0.0001

thick*subasthk -0.0082 0.0010  9423 -8.07 < 0.0001

basethk*uwtappl 0.1275 0.0172  9423 7.40 < 0.0001

subasthk*uwtappl 0.1355 0.0181  9423 7.50 < 0.0001

thick*basethk*uwtappl -0.0155 0.0045  9423 -3.43 0.0006

thick*subasthk*uwtappl -0.0077 0.0036  9423 -2.16 0.0307

basethk*subasthk*uwtap
pl -0.0291 0.0029  9423 -9.87 < 0.0001

thick*basethk*subasthk*
uwtappl 0.0073 0.0006  9423 11.53 < 0.0001

Note. (a) Model fit: AIC=12481.77, BIC=12710.69, 
logLik=-6208.89. (b) Correlation structure: AR(1); 
parameter estimate(s): Phi= 0.126. (c) Variance function 
structure: for different standard deviations per stratum 
(thick= 2, 1, 3, 4, 5, 6 in.), the parameter estimates are: 1, 
1.479, 0.935, 1.199, 0.982, 0.959. 
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Predictions (Subject), and observed values for the proposed 
LME model 
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