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Preliminary Analysis of Flexible Pavement Serviceability Index Data Using Linear Mixed 
Effects Models 

Hsiang-Wei Ker and Ying-Haur Lee 

Abstract: Multilevel data are very common in many fields. Because of its hierarchical data 
structure, multilevel data are often analyzed using Linear Mixed-Effects (LME) models. The 
exploratory analysis, statistical modeling, and the examination of model-fit of LME models are 
more complicated than those of standard multiple regressions. A systematic modeling approach 
using visual-graphical techniques and LME models is proposed and demonstrated using the 
original AASHO road test flexible Pavement Serviceability Index (PSI) data. The proposed 
approach including exploring the growth patterns at both group and individual levels, identifying 
the important predictors and unusual subjects, choosing suitable statistical models, selecting a 
preliminary mean structure, selecting a random structure, selecting a residual covariance structure, 
model reduction, and the examination of the model fit will be further discussed.  

Keywords: AASHO road test, flexible pavement, pavement serviceability index (PSI), linear 
mixed-effects models. 

INTRODUCTION 
Longitudinal data are used in the research on growth, development, and change. Such data consist 
of measurements on the same subjects repeatedly over time. To describe the pattern of individual 
growth, make predictions, and gain more insight into the underlying causal relationships related 
to developmental pattern requires studying the structure of measurements taken on different 
occasions [1]. Multivariate analysis of variance (MANOVA), repeated measures ANOVA, and 
standard multiple regression methods have historically been the most widely used tools for 
analyzing longitudinal data. Polynomial functions are usually employed to model individual 
growth patterns.  

Classical longitudinal data analysis relies on balanced designs where each individual is 
measured at the same time (i.e., no missing observations). MANOVA, which imposes no 
constraints on residual covariance matrix, is one common approach in analyzing longitudinal data. 
However, an unconstrained residual covariance structure is not efficient if the residual errors 
indeed possess a certain structure, especially when this structure is often of interest in 
longitudinal studies. Repeated measures ANOVA have the assumption of sphericity. It is too 
restrictive for longitudinal data because such data often exhibit larger correlations between 
nearby measurement than between measurements that are far apart. The variance and covariance 
of the within-subject errors also vary over time. The sphericity assumption is inappropriate in 
longitudinal studies if residual errors exhibit heterogeneity and dependence.   

In longitudinal studies, the focus is on determining whether subjects respond differently 
under different treatment conditions or at different time points. The errors in longitudinal data 
often exhibit heterogeneity and dependence, which call for structured covariance models. 
Longitudinal data typically possess a hierarchical structure that the repeated measurements are 
nested within an individual. While the repeated measures are the first level, the individual is the 
second-level unit and groups of individuals are higher level units [2]. Traditional regression 
analysis and repeated measures ANOVA fail to deal with these two major characteristics of 
longitudinal data, i.e. heterogeneity and dependence. 

Linear Mixed-Effects (LME) models are an alternative for analyzing longitudinal data. 
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These models can be applied to data where the number and the spacing of occasions vary across 
individuals and the number of occasions is large. LME models can also be used for continuous 
time. LME models are more flexible than MANOVA in that they do not require an equal number 
of occasions for all individuals or even the same occasions. Moreover, varied covariance 
structures can be imposed on the residuals based on the nature of the data. Thus, LME models are 
well suited for longitudinal data that have variable occasion time, unbalanced data structure, and 
constrained covariance model for residual errors. 

A systematic modeling approach using visual-graphical techniques and LME models is 
proposed and demonstrated using the original AASHO road test flexible Pavement Serviceability 
Index (PSI) data [3]. The proposed approach including characterizing the growth patterns at both 
group and individual levels, identifying the important predictors and unusual subjects, choosing 
suitable statistical models, selecting random-effects structures, suggesting possible residuals 
covariance models, and examining the model-fits will be further discussed [4-6].  

METHODS 
Hierarchical linear models allow researchers to analyze hierarchically nested data with two or 
more levels. A two-level hierarchical linear model consists of two submodels: individual-level 
(level-1) and group-level (level-2). The parameters in a group-level model specify the unknown 
distribution of individual-level parameters. The intercept and slopes at individual-level can be 
specified as random. Substituting the level-2 equations for the slopes into the level-1 model 
yields a linear mixed-effects (LME) model. LME models are mixed-effects models in which both 
fixed and random effects occur linearly in the model function [7]. 

In a typical hierarchical linear model, the individual is the level-1 unit in the hierarchy. 
An individual has a series of measurements at different time points in longitudinal studies [8]. 
When modeling longitudinal data, the repeated measurements are the level-1 units (i.e., a separate 
level below individuals). The individual is the second-level unit, and more levels can be added 
for possible group structures [2]. The basic model at the lowest level, also regarded as repeated-
measures level, for the application of hierarchical linear model in longitudinal data can be 
formulated as: 

Level-1: tjtjjtj1j0jtj xc rY 2 +++= βββ  (1) 

Where Ytj is the measure for an individual j at time t, ctj is the time variable indicating the 
time of measurement for this individual, xtj is the time-varying covariate, and rtj is the residual 
error term. 

Level-2: 

2jj121202j

1jj111101j

0jj101000j

W
W

W

u
u

u

++=

++=

++=

γγβ

γγβ

γγβ

 (2) 

In this level-2 equation, W is the time-invariant covariate for this individual. After 
substituting level-2 equations into level-1, the combined or the linear mixed-effects model is: 

]uuu[ ][Y 21112010 tjtj2jtj1j0jtjj1tjj1j101tjtj00tj rxcxWcWWxc +++++++++= γγγγγγ  (3)  

The level-1 model is a within-individuals model and the level-2 model is a between-
individuals model [9]. Note that there is no time-invariant covariate in level-2 before introducing 
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the variable W. The variance and covariance of the u’s are for the random intercept and slopes. 
After introducing the variable W, the variance and the covariance of u’s are the variance and 
covariance of residual intercept and slopes after partitioning out the variable W. More time-
invariant variables can be added sequentially into level-2 to get different models. The reduction 
in variance of u’s could provide an estimate of variance in intercepts and slopes accounted for by 
those W’s [10]. This linear mixed-effects model does not require that every individual must have 
the same number of observations because of possible withdrawal from study or data transmission 
errors. 

Let Ytj denotes the tth measurement on the jth individual, in which t = 1, 2, … ni 
measurements for subject j, and j = 1, 2, … N individuals. The vector Yj is the collection of the 
observations for the jth individual. A general linear mixed-effects model for individual j in 
longitudinal analysis can be formulated as:  

jjjjj RUZβXY ++=  (4)  

Where Xj is an (nj×p) design matrix for the fixed effects; and β is a (p×1) vector of fixed-
effect parameters. Zj is an (nj×r)design matrix for the random effects; and Uj is an (r×1) vector of 
random-effect parameters assumed to be independently distributed across individuals with a 
normal distribution, Uj ~NID(0, T). The Uj vector captures the subject-specific mean effects as 
well as reflects the extra variability in the data. Rj  is an (nj×1) vector for the residuals. The within 
errors, Rj, are assumed normally distributed with mean zero and variance σ2Wj, where Wj (stands 
for “within”) is a covariance matrix with a scale factor σ2.  The matrix Wj can be parameterized 
by using a few parameters and assumed to have various forms, e.g., an identity matrix or the first-
order of autoregression or moving-average process [11-12]. They are independent from 
individual to individual and are independent of random effects, Uj. 

Other choices for variance-covariance structures that involve correlated within-subject 
errors have been proposed. Using appropriate covariance structures can increase efficiency and 
produced valid standard errors. The choice among covariance depends upon data structures, 
subject-related theories and available computer packages [13]. In some cases, heterogeneous 
error variances can be employed in the model because the variances in this model are allowed to 
increase or decrease with time. The assumption of common variance shared by all individuals is 
removed [11, 14]. There are some possible forms for modeling heterogeneity for within-subject 
errors. For example, a variance model with different variances for each level of a stratification 
variable xij is appropriate if the data shows that different variances appear for the levels of the 
stratification variable. A variance model with power function can be used if the within-subject 
variability is to increase with some power of the absolute value of a covariate xij.  

LME models generally assume that level-1 residual errors are uncorrelated over time. 
This assumption is questionable for longitudinal data that have observations closely spaced in 
time. There typically exists dependence between adjacent observations. This is called serial 
correlation and it tends to diminish as the time between observations increases. Serial correlation 
is incorporated into models for time-series data. Serial correlation is part of the error structure 
and if it is present, it must be part of the model for producing proper analysis [11]. If the 
dependent within-subject errors are permitted, the choice of the model to represent the 
dependence needs careful consideration. It would be preferable to incorporate as much 
individual-specific structure as possible before introducing a serial correlation structure into 
within-subject errors [15]. For modeling the dependency of within-subject errors, autoregressive 
models, moving average models, and a mixture of autoregressive-moving average models may be 
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used. The S-PLUS statistical analysis software [16] was used in this study. 

DATA DESCRIPTION AND REEVALUATION OF THE EXISTING MODEL 
The AASHO road test was a large-scale highway research project conducted near Ottawa, Illinois 
from 1958 to 1960, and has had by far the largest impact on the history of pavement performance 
analysis. The test consisted of 6 loops, numbered 1 through 6. Each loop was a segment of a four-
lane divided highway and centerlines divided the pavements into inner and outer lanes, called 
lane 1 and lane 2. Pavement designs varied from section to section. The axle loads on each loop 
and lane are listed in Table 1. All sections had been subjected to almost the same number of axle 
load applications on any given date. Pavement performance data were collected based on the 
trend of the pavement serviceability index at 2-week interval. The last day of each 2-week period 
was called an “index day.” Index days were numbered sequentially from 1 (November 3, 1958) to 
55 (November 30, 1960) [3, 17].  

TABLE 1 Magnitude of Axle Loads on Each Loop and Lane 

Loop Lane 

1 2 3 4 5 6 

1 0 2-S 12-S 18-S 22.4-S 30-S 

2 0 6-S 24-T 32-T 40-T 48-T 
Note: The axle loads are in thousand pounds (kips); S stands for single axle; T stands for 

tandem axle. 
Empirical relationships between pavement thickness, load magnitude, axle type, 

accumulated axle load applications, and performance trends for both flexible and rigid pavements 
were developed after the completion of the road test. Several combinations of certain rules, 
mathematical transformations, analyses of variance, graphs, and linear regression techniques 
were utilized in the modeling process to develop such empirical relationships. During the road 
test, the damage rate was found relatively low in winter but relatively high in spring for flexible 
pavements. Therefore, load applications were adjusted by “seasonal weighting function” such 
that a better “weighted” flexible pavement equation was developed. Only the serviceability 
records of 3.5, 3.0, 2.5, 2.0, and 1.5 were used during the regression analysis. The data from the 
lane 1 of loop 2 were excluded from the model due to very poor fit. A load equivalence factor 
was then established to convert different configurations of load applications to standard 18-kip 
equivalent single-axle loads (ESAL). This ESAL concept has been adopted internationally since 
then.  

However, Lee [18] has pointed out that the error variance increases when the predicted 
number of weighted load repetitions (W) increases using the original flexible pavement design 
model. To serve the needs of predicting pavement serviceability index (PSI) after certain load 
applications on a given section, engineers would commonly rearrange the original flexible 
pavement equation into the following form:  

[ ]

321

2.0)1log(*36.9)log(*
)1(

1094
4.0

11.014.044.0
10*7.22.4

19.5

DDDSN
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SNESAL
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++=
−=

++−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

  (5)  

In which the regression statistics were: R2=0.212, SEE=0.622, and N=1083. R2 is the 
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coefficient of determination, SEE is the standard error of the estimate, and N is the number of 
observations. Also note that SN is the structural number of the pavement section; D1 is the 
surface thickness (in.); D2 is the base thickness (in.); D3 is the subbase thickness (in.). Figure 1 
depicts the predicted versus actual PSI values. Note that PSI ranges from 0 to 5 (0-1 for very poor; 
1-2 for poor; 2-3 for fair; 3-4 for good; and 4-5 for very good conditions). 

 
FIGURE 1 Predicted versus actual PSI [18]. 

Coree and White [19] pointed out that the “weighted” traffic was adjusted in an empirical 
fashion to account for the varying effect of the annual climatic cycle on the test site. If the raw 
“unweighted” traffic data were used, the rearranged PSI equation became: 

[ ]
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  (6)  

The aforementioned relationship [3, 18, 19] was carefully reevaluated in this study. The 
resulting regression statistics became even worse: R2=0.107, SEE=0.665, N=968. Only 968 data 
points were used for the PSI prediction since some data having predicted PSI values less than 
zero were excluded from consideration. Banan and Hjelmstad [20] also indicated that the existing 
AASHO model does not represent the observed road test serviceability trends well.  

As pavement design evolves from traditional empirically based methods toward 
mechanistic-empirical, the ESAL concept used for traffic loads estimation is no longer adopted in 
the recommended Mechanistic-Empirical Pavement Design Guide (MEPDG) [21], although 
many researchers have argued that it is urgently in need of reconsideration [3, 18, 22]. As such, 
the complete AASHO flexible pavement serviceability index data were utilized hereafter in this 
study. The raw “unweighted” traffic data were adopted in the subsequent analysis to avoid the 
undesirable complication of the “weighted” applications. Several climatic variables including 
monthly humidity, precipitation, temperature, freezing index, freeze-thaw cycles, snowfall, days 
above 32 degree C, and days below 0 degree C were also retrieved from the Long-Term 
Pavement Performance (LTPP) database [23] in an attempt to incorporate the test site climatic 
effects into the modeling process. Since spring thaw was considered as the primary source of 
failure on the AASHO Road Test, the average monthly freeze-thaw cycles (FT) as shown in 
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Figure 2 has a general trend similar to “seasonal weighting function” was adopted subsequently.  
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FIGURE 2 Average monthly FT cycles versus index day. 

EXPLORATORY ANALYSIS  
Exploratory analysis is a technique to visualize the patterns of data. It is detective work of 
exposing data patterns relative to research interests. Exploratory analysis of longitudinal data can 
serve to: (a) discover as much of the information regarding raw data as possible rather than 
simply summarize the data; (b) highlight mean and individual growth patterns which are of 
potential research interest; as well as (c) identify longitudinal patterns and unusual subjects. 
Hence plotting individual curves to carefully examine the data should be performed first before 
any formal curve fitting is carried out. For the nature of this flexible pavement data, the 
exploratory analysis includes exploring “growth” patterns and the patterns regarding 
experimental conditions. 

Exploring “Growth” Patterns 
The first step, which is perhaps the best way to get a sense of a new data, is to visualize or plot 
the data. Most longitudinal data analyses address individual growth patterns over time. Thus, the 
first useful exploratory analysis is to plot the response variable against time including individual 
and overall mean profiles. Individual mean profiles, which summarize the aspects of response 
variable for each individual over time, can be used to examine the possibility of variations among 
individuals and to identify potential outliers. The overall mean profile summarizes some aspects 
of the response variable over time for all subjects and is helpful in identifying unusual time when 
significant differences arise.  

Figure 3 shows the lines connecting the dependent variable (mean PSI) over time for each 
subject (loop/lane). Most subjects have higher mean PSIs at the beginning of the observation 
period, and they tend to decrease over time. The spread among the subjects is substantially 
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smaller at the beginning than that at the end. In addition, there exist noticeable variations among 
subjects. The overall mean growth curve over time is presented in Figure 4. The overall mean 
PSIs are larger at the beginning and decrease over time; and the rate of deterioration is higher at 
the beginning than that at the end.  

Exploring the Patterns of Experimental Conditions 
In addition to time (in terms of index day), different major experimental conditions may be 
considered. This exploratory analysis is intended to discover the overall and individual patterns 
of each experimental condition and their interactions on mean PSIs. Subsequently, the patterns of 
mean PSIs for each subject and the patterns of overall mean PSIs on each experimental condition 
and their interactions over time are investigated. Figure 5 is an example plot of mean PSIs for 
each subject on different surface thickness over time. Generally speaking, the mean PSIs for 
pavements with higher surface thickness are higher than those with thinner surface layer. 

LINEAR MIXED EFFECTS MODELING APPROACH 
The following proposed modeling approach is generally applicable to modeling multilevel 
longitudinal data with a large number of time points. Model building procedures including the 
selection of a preliminary mean structure, the selection of a random structure, the selection of a 
residual covariance structure, model reduction, and the examination of the model fit are 
subsequently illustrated. 
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FIGURE 3 Mean PSI for each subject (loop/lane) versus index day. 
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FIGURE 4 Overall Mean PSI versus index day. 
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FIGURE 5 Mean PSI for each subject (loop/lane) on different surface thickness versus 

index day. 

Selecting a Preliminary Mean Structure 
Covariance structures are used to model variation that cannot be explained by fixed effects and 
depend highly on the mean structures. The first step to model building is to remove the 
systematic part and remove this so that the variation can be examined. The dataset includes the 
following explanatory variables: thick, basethk, subasthk, uwtappl, FT.  In which, thick is the 
surface thickness (in.); basethk is the base thickness (in.); subasthk is the subbase thickness (in.); 
and uwtappl is the unweighted applications (millions). Also note that FT is the average monthly 
freeze-thaw cycles obtained from the LTPP database [23]. 

A model containing all main effects, and all the two-way and three-way interaction terms 
was first investigated. This model (called model-1) has the form: 
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  (7)  

Selecting a Preliminary Random Structure 
The second step is to select a set of random effects in the covariance structure. An appropriately 
specified covariance structure is helpful in interpreting the random variation in the data, 
achieving the efficiency of estimation, as well as obtaining valid inferences of the parameters in 
the mean structure of the model. In longitudinal studies, the same subject is repeatedly measured 
over time. The data collected from longitudinal study is a collection of correlated data. The 
within-subject errors are often heteroscedastic (i.e., having unequal variance), correlated, or both. 

Exploring preliminary random-effects structure  
A useful tool to explore the random-effects structure is to remove the mean structure from the 
data and use ordinary least square (OLS) residuals to check the need for a linear mixed-effects 
model and decide which time-varying covariate should be included in the random structure. 

The boxplot of residuals by subject corresponding to the fit of a single linear regression 
by using the same form of the preliminary level-1 model was conducted. This is the case when 
grouping structure is ignored from the hierarchy of data. Since the residuals are not centered 
around zero, there are considerable differences in the magnitudes of residuals among subjects. 
This indicates the need for subject effects, which is precisely the motivation for using linear 
mixed-effects model. Separate linear regression models were employed to fit each subject to 
explore the potential linear relationship.  

To assist in selecting a set of random effects to be included in the covariance model, the 
plots of mean raw residuals against time and the variance of residuals against time are useful. If 
only random-intercepts models hold, the residual has the form, ijjij RUe += 0 , in which U0j  is the 
random effect for intercepts and Rij is the level-1 error. If this plot shows constant variability over 
time or the curves are flat, then only random intercept model is needed. If random-intercepts-and-
slopes models hold, the residual has the form, ++= ijjjij xUUe 110  ijqijqj RxU ++... , where Uqj 
is the random effect for the q-th slope. In the case of random-intercepts-and-slopes model, the 
plot would show the variability varies over time or there are some unexplained systematic 
structures in the model. One or more random effects, additional to random intercept, have to be 
added. 

 
Selecting a variance-covariance structure for random effects 
Three possible variance-covariance structures including general positive definite (unstructured), 
diagonal, and block-diagonal based on different assumptions were investigated. General positive-
definite is a general covariance matrix parameterized directly in terms of variances and 
covariances. Diagonal covariance structure is used when random-effects are assumed 
independent. Block-diagonal matrix is employed when it is assumed that different sets of random 
effects have different variances. The forms of these three variance-covariance structures are given 
in equation (8). 
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Table 2 displays the model comparison of these three models. The unstructured model has 
the smallest absolute value of log-likelihood among them. The likelihood ratio test for 
unstructured model versus diagonal model is 160.23 with p-value less than 0.0001. Thus, 
unstructured variance-covariance model will be used hereafter. 

TABLE 2 Model Comparison Using Three Variance-Covariance Structures 
Model df AIC BIC logLik Test L.Ratio p-value 

(1) Unstr 29 12910.29 13117.74 -6426.14    
(2) Diag 22 13056.52 13213.90 -6506.26 1 vs. 2 160.234 < 0.0001 
(3) Bk-diag 21 13060.14 13210.37 -6509.07 2 vs. 3 5.621 0.0177 
 

The random effects of the preliminary level-2 model include intercept, uwtappl, quadratic 
term of uwtappl, and FT. The variance-covariance structure is a general positive-definite matrix. 
Putting the preliminary level-1 and level-2 models together, the preliminary linear-mixed-effects 
model is then: 
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  (9)  

 

Selecting a Residual Covariance Structure 
The absolute value of log-likelihood for this heteroscedastic model is 6273.29. The need of 
heteroscedastic model can be formally checked by using the likelihood ratio test, which is 
summarized in Table 3. The small p-value indicates that the heteroscedastic model explains the 
data significantly better than homoscedastic model. 
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TABLE 3 Comparison of Heteroscedastic and Homoscedastic Models 
Model Df AIC BIC logLik L.Ratio p-value 

Homoscedastic 29 12910.29 13117.74 -6426.14   
Heteroscedastic 34 12614.57 12857.79 -6273.29 305.71 < 0.0001

 
Modeling dependence  

Correlation structures are used to model dependence among the within-subject errors. 
Autoregressive model with order of 1, called AR(1), is the simplest and one of the most useful 
models [7]. The autocorrelation function (ACF), which begins autocorrelation at lag 1 and then 
declines geometrically, for AR(1) is particularly simple. Autocorrelation functions for 
autoregressive model of order greater than one are typically oscillating or sinusoidal functions 
and tend to damp out with increasing lag [24]. 

Thus, AR(1) may be adequate to model the dependency of the within-subject errors. The 
absolute value of log-likelihood for this heteroscedastic AR(1) model is 6207.24. The estimated 
single correlation parameter φ is 0.125. The heteroscedastic model (corresponding to φ = 0) is 
nested within the heteroscedastic AR(1) model. 

Likewise, the need of heteroscedastic AR(1) model can be checked using likelihood ratio 
test as given in Table 4. The small p-value indicates that the heteroscedastic AR(1) model 
explains the data significantly better than heteroscedastic model, suggesting that within-group 
serial correlation is present in the data. 

TABLE 4 Comparison of Heteroscedastic and Heteroscedastic AR(1) Models 
Model Df AIC BIC LogLik L.Ratio p-value 

Heteroscedastic 34 12614.57 12857.79 -6273.29   
Heteroscedastic AR(1) 35 12484.47 12734.85 -6207.24 132.10 < 0.0001 

Model Reduction 
After specifying the within-subject error structure, the next step is to check whether the random-
effects can be simplified. It is also desirable to reduce the number of parameters in fixed effects 
in order to achieve a parsimonious model that can well represent the data. A likelihood ratio test 
statistic, whose sampling distribution is a mixture of two chi-squared distributions, is used to test 
the need for random-effects. The p-value is determined by equal weight of the p-values of a 
mixture of two chi-squared distributions. To assess the significance of the terms in the fixed 
effects, conditional t-tests are used. 

 
Reduction of random effects  

As suggested by Morrell, Pearson, and Brant [25], the matrix of known covariates should 
not have polynomial effect if not all hierarchically inferior terms are included. The same rule 
applies to interaction terms. Hence, significance tests for higher-order random effects should be 
performed first. The random effects included in the preliminary random-effects structure are: 
intercept, uwtappl, uwtappl2, and FT. Table 5 shows the models and the associated maximum 
log-likelihood values. The small p-value indicates that the preliminary random-effects structure 
(Model 1) explains the data significantly better than the others. Thus, no reduction of random 
effects is needed. 
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TABLE 5 Random-Effects Models with the Associated Maximum Log-Likelihood Values 
Model df AIC BIC logLik Test L.Ratio p-value 

(1) Intercept, uwtappl, uwtappl2, FT 35 12484.5 12734.9 -6207.2    
(2) Intercept, uwtappl, FT 31 12729.6 12951.4 -6333.8 1 vs. 2 132.10 < 0.0001

(3) Intercept, uwtappl, uwtappl2 31 12573.5 12795.2 -6255.7 1 vs. 3 96.99 < 0.0001
 
Reduction of fixed effects  
An adequate and appropriately specified random-effects structure implies efficient model-based 
inferences for the fixed effects. When considering the reduction of fixed effects, one model is 
nested within the other model and the random-effects structures are the same for the full and the 
reduced models. Likelihood ratio tests are appropriate for the model comparison. The parameter 
estimates, estimated standard errors, t-statistics and p-values for the fixed effects of the 
heteroscedastic AR(1) model are revisited. The heteroscedastic AR(1) model can be reduced to a 
more parsimonious model due to the existence of some insignificant parameter estimates. The 
reduction of fixed effects starts with removing the parameters with largest p-values, insignificant 
terms, and combining the parameters not changing significantly. These processes are repeated 
until no important terms have been left out of the model.  

Proposed Preliminary LME Model 
The final proposed preliminary linear mixed-effects model is listed in Table 6. The fixed-effects 
structures of the proposed model contain significant treatment effects for thick, basethk, subasthk, 
uwtappl, uwtappl^2, FT, and several other two-, three-, and four-way interaction terms. The 
positive parameter estimates for thick, basethk, and subasthk indicates that higher mean PSI 
values tend to occur on thicker pavements. The parameter estimate of uwtappl is negative 
indicating that lower PSI values for higher load applications.  

Furthermore, the preliminary LME model also indicates that: The standard error for the 
pavements with surface thickness of 1 in. or 4 in. is about 48% or 20% higher than those with 
surface thickness of 2 in., respectively. There exists dependency in within-subject errors. The 
estimated single correlation parameter for the AR(1) model is 0.126. 

VALIDATION AND APPLICATION OF THE LME MODEL 

Examination of the Model Fit 
Figure 6 depicts a plot of the population predictions (fixed), within-group predictions (Subject), 
and observed values versus time for the proposed preliminary LME model by subjects. 
Population predictions are obtained by setting random-effects to zero whereas within-group 
predictions use estimated random effects. The prediction line of the within-group predictions 
follows the observed values more closely indicating the proposed LME model provides better 
explanation to the data. 

Other Tentative Applications  
Nevertheless, attempts to convert different configurations of load applications to standard 18-kip 
ESALs [3, 17] based on the preliminary LME model were not very successful [26-28]. These 
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findings were not surprisingly unexpected since Lee [18] has pointed out that a regression model 
is very different from a mathematical equation in that the latter one may be transformed or 
rearranged in various forms without losing its generality. On the other hand, the prediction of a 
transformed or rearranged regression model will not have the same degree of accuracy as the 
original one.  A regression model should be strictly limited to the same form from which it was 
developed unless further investigation is performed for the transformed or rearranged model. 

Further Model Enhancements 
To serve the needs of converting different load applications to standard 18-kip ESALs, further 
model enhancements are guaranteed. Several research attempts have been conducted [26-28] 
using advanced statistical regression techniques such as nonlinear regression, projection pursuit 
regression, and local regression [16]. Subject-related engineering knowledge and restrictions 
have been incorporated into the modeling process as well to have better agreement with highway 
design practices. The response variables were uwtappl, log10(uwtappl), or load equivalency factor 
(LEF). The original mathematical model form of the AASHO Road Test equation using damage 
index concept [3] was reevaluated and will be subsequently revised. Nevertheless, a complete 
treatment of such research efforts is beyond the scope of this paper.  
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TABLE 6 Proposed Preliminary LME Model 
        Random Effects 

 Intercept uwtappl uwtappl2 FT Residual 
Standard Deviation 0.170 1.679 0.765 0.00722 0.448 

Fixed Effects 
Parameter Value Std.Error DF t-value p-value 
(Intercept) 2.4969  0.0703  9423 35.51  < 0.0001 

Thick 0.2629  0.0122  9423 21.48  < 0.0001 
Basethk 0.0590  0.0066  9423 8.91  < 0.0001 
subasthk 0.0386  0.0041  9423 9.37  < 0.0001 
uwtappl -3.6191 0.5254  9423 -6.89  < 0.0001 

uwtappl^2 1.1524  0.2481  9423 4.65  < 0.0001 
FT 0.0148  0.0023  9423 6.39  < 0.0001 

thick*basethk -0.0062 0.0016  9423 -3.81  < 0.0001 
thick*subasthk -0.0082 0.0010  9423 -8.07  < 0.0001 

basethk*uwtappl 0.1275  0.0172  9423 7.40  < 0.0001 
subasthk*uwtappl 0.1355  0.0181  9423 7.50  < 0.0001 

thick*basethk*uwtappl -0.0155 0.0045  9423 -3.43  0.0006 
thick*subasthk*uwtappl -0.0077 0.0036  9423 -2.16  0.0307 

basethk*subasthk*uwtappl -0.0291 0.0029  9423 -9.87  < 0.0001 
thick*basethk*subasthk*uwtappl 0.0073  0.0006  9423 11.53  < 0.0001 
Note. (a) Model fit: AIC=12481.77, BIC=12710.69, logLik=-6208.89. (b) Correlation structure: 
AR(1); parameter estimate(s): Phi= 0.126. (c) Variance function structure: for different standard 
deviations per stratum (thick= 2, 1, 3, 4, 5, 6 in.), the parameter estimates are: 1, 1.479, 0.935, 
1.199, 0.982, 0.959. 
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FIGURE 6 Population prediction (fixed), within-group predictions (Subject), and observed 

values for the proposed LME model. 
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CONCLUDING REMARKS 
A systematic modeling approach using visual-graphical techniques and LME models which is 
generally applicable to modeling multilevel longitudinal data with a large number of time points 
is proposed in this paper. The original AASHO road test flexible pavement serviceability index 
data were used to illustrate the proposed modeling approach.  

Exploratory analysis of the data indicated that most subjects (loop/lane) have higher mean 
PSIs at the beginning of the observation period, and they tend to decrease over time. The spread 
among the subjects is substantially smaller at the beginning than that at the end. In addition, there 
exist noticeable variations among subjects. 

A preliminary LME model for PSI prediction was developed. The positive parameter 
estimates for thick, basethk, and subasthk indicates that higher mean PSI values tend to occur on 
thicker pavements. The parameter estimate of uwtappl is negative indicating that lower PSI 
values for higher load applications. The prediction line of the within-group predictions (Subject) 
follows the observed values more closely than that of the population predictions (fixed) 
indicating the proposed LME model provides better explanation to the data. 
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