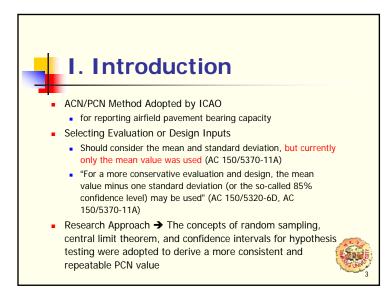
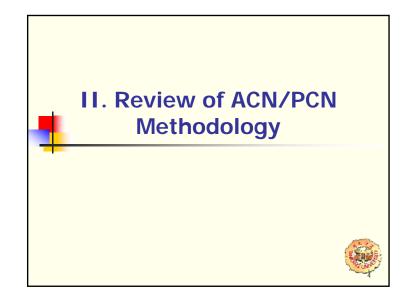
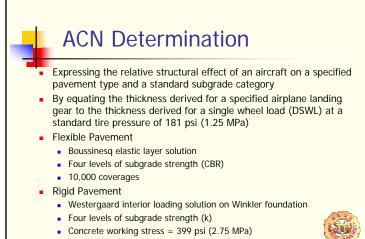


Development of a Robust Approach for Evaluation of Airport Pavement Bearing Capacity

> Dr. Ying-Haur Lee, Tamkang Univ. Mr. Yao-Bin Liu, National Central Univ. Dr. Jyh-Dong Lin, National Central Univ. Dr. Hsiang-Wei Ker, Chihlee Inst. of Tech.


> > Taiwan, January 11~15, 2009





- IV. Application of NDT Test Data
- V. Development of A Robust Approach
- VI. A Case Study for Rigid Pavements
- VII. Concluding Remarks

ACN = 2 * DSWL (in 1000 kg)

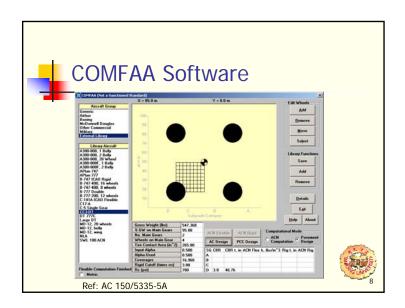
• Exp	pressing the r	elative load-car Indard single w	rying capacity of a	a pavement
60	/ R	/ В	/ W	/ T
PCN Value	Pavement Type	Subgrade Category	Allowable Tire Pressure	Method Used
A Numerical Value	R (Rigid) F (Flexible)	A (High) B (Medium) C (Low) D (Ultra Low)		T (Technical) U (Using Aircraft)
AC	N value equal	to or less than	bort an aircraft tha the pavement's P out weight restrict	CN value

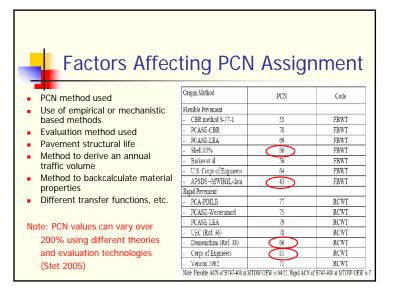
	Subgrade Strength Category						
•	Subgrade Category Code	Flexible Pavement	Rigid Pavement				
		Subgrade CBR	Subgrade k- value (MN/m ³)	Subgrade k- value (pci)			
	A (High)	15 (CBR≧13)	$150 \ (k \ge 120)$	552.6 (k ≥ 442)			
	B (Medium)	10 (8 <cbr<13)< td=""><td>80 (60 < k < 120)</td><td>294.7 (221 < k < 442)</td><td></td></cbr<13)<>	80 (60 < k < 120)	294.7 (221 < k < 442)			
	C (Low)	$ \begin{array}{c} 6\\ (4 < CBR \leq 8) \end{array} $	$40 (25 < k \le 60)$	147.4 (92 < k \leq 221)			

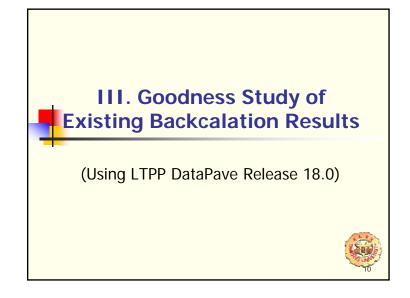
20

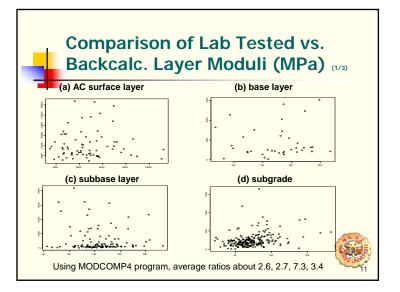
 $(K \leq 25)$

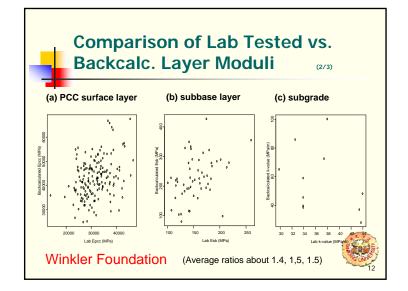
73.7

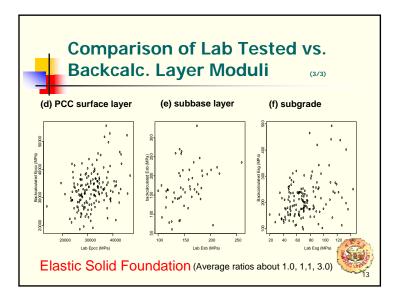

 $(k \leq 92)$

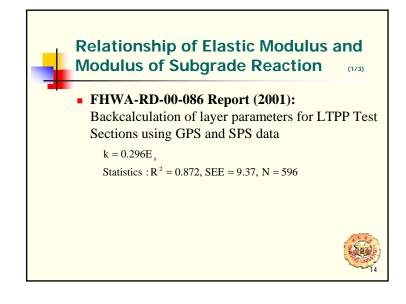

3

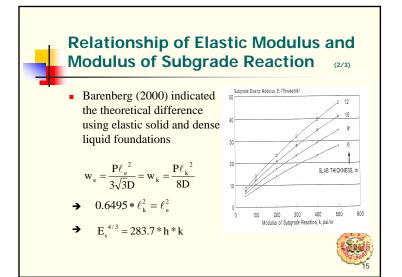

 $(CBR \leq 4)$

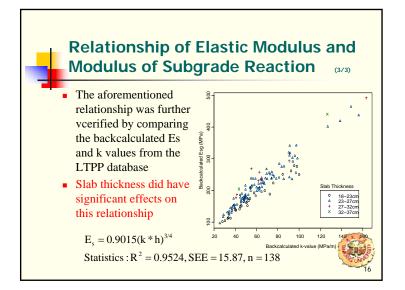

D

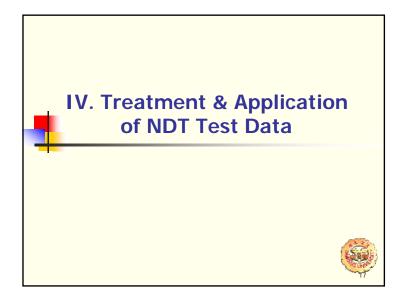

(Ultra Low)

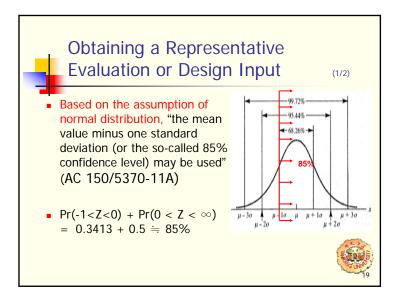


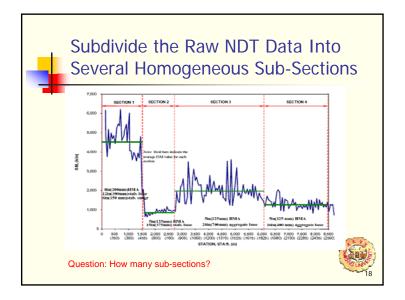


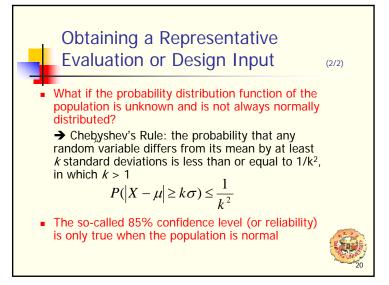


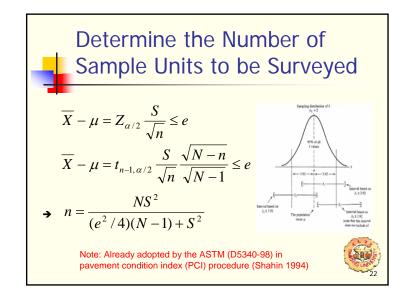


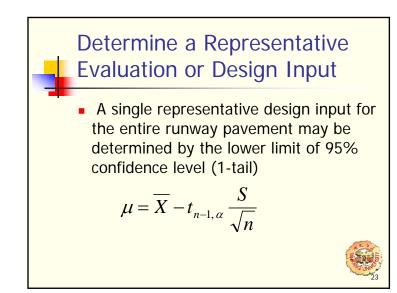


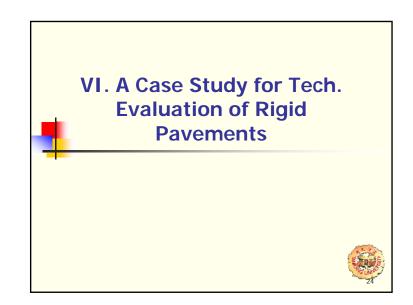




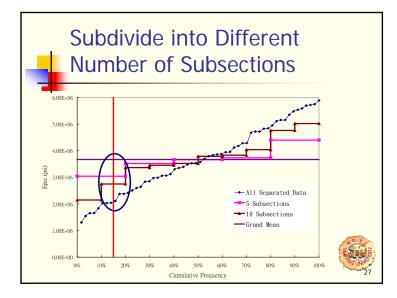


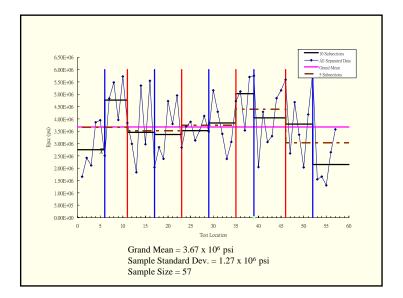






- limit theorem, and confidence intervals for hypothesis testing
- This robust approach includes:
 - determine the number of sample units to be surveyed
 - determine a representative design input for the entire runway
 - obtain a single PCN value as usual





Example Rigid Airfield Pavement Traffic Data						
	Operating	Tire Pressure	ACN	**	Annual	
Airplane	Weight, lbs	(psi)	(R/C)	P/C	Departures	Coverages
B727-200	185,000	148	55	2.92	400	2,740
B737-300	130,000	195	38	3.79	6,000	31,662
A319-100	145,000	173	42	3.18	1,200	7,547
B747-400	820,000	200	68	3.46	3,000	17,341
B767-300ER	370,000	190	58	3.60	2,000	11,111
DC8-63	330,000	194	62	3.35	800	4,776
А300-В4	370,000	205	67	3.49	1,500	8,595
B777-200	600,000	215	77	4.25	300	1,412
0	determined at 9 =200 pci, h = 1	-	0			

1	valuati		0	Differer ds	
Methods	Different Evaluation Methods	Representative Epcc (psi)	Estimated Mr (psi)	Calculated Allowable Gross Weight (lbs)	PCN
Ι	Grand Mean	3.67 x 10 ⁶	648.1	700,000	55.0/R/C/W/T
II	Grand Mean - 1 Std.Dev.	2.40 x 10 ⁶	592.8	640,000	48.6/R/C/W/T
III	5 Subsections (85%)	3.04 x 10 ⁶	620.7	671,000	51.9/R/C/W/T
IV	10 Subsections (85%)	2.75 x 10 ⁶	608.1	656,000	50.3/R/C/W/T
v	All Separated Data (85%)	2.05 x 10 ⁶	585.1	632,000	47.8/R/C/W/T
VI	95% Confidence	3.33 x 10 ⁶	585.1	684,000	53.3/R/C/W T

VII. Concluding Remarks (1/2)

- According to AC 150/5370-11A's recommendation, the mean value minus one standard deviation (or the so-called 85% confidence level) may be used to obtain a more conservative evaluation or design input.
- Nevertheless, it was found that this procedure is not based on sound statistical principles especially when the probability distribution function of the population is almost always unknown and is not necessarily normal.

VII. Concluding Remarks (2/2)

- Consequently, the concepts of random sampling, central limit theorem, and confidence intervals for hypothesis testing were adopted.
- It was proposed that a single representative design input for the entire runway pavement be determined by the lower limit of 95% confidence level (1-tail) to derive a more consistent and repeatable PCN value.
- A case study was conducted to illustrate the potential problems of the existing ACN/PCN procedure and the benefits of the proposed revisions.

Acknowledgements

- Sponsored by National Science Council, Taiwan
- Ms. Chia-Huei Lin and Ms. Pei-Hwa Wu for their hard work in the goodness study of existing backcalculation results
- Special thanks to Prof. Chia-Pei Chou of National Taiwan Univ. for her kind assistance in making this presentation.

