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Development of Transverse Cracking Prediction Models for Jointed Concrete 
Pavements Using LTPP Database 

Y. H. Lee, H. W. Ker, and C. H. Lin 

Abstract: The main objective of this study is to develop improved transverse cracking 
prediction models for jointed concrete pavements using the Long-Term Pavement 
Performance (LTPP) database. The retrieval, preparation, and cleaning of the database were 
carefully handled in a systematic and automatic approach. The prediction accuracy of the 
existing prediction models implemented in the recommended Mechanistic-Empirical 
Pavement Design Guide (NCHRP Project 1-37A) was found to be inadequate. Exploratory 
data analysis indicated that the normality assumption with random errors and constant 
variance using conventional regression techniques might not be appropriate for this study. 
Therefore, several modern regression techniques including generalized linear model (GLM) 
and generalized additive model (GAM) along with the assumption of Poisson distribution 
were adopted for the modeling process. The resulting mechanistic-empirical model included 
several variables such as pavement age, yearly ESALs, accumulated ESALs, annual 
precipitation, freeze-thaw cycle, annual temperature range, stress ratio, and percent steel for 
the prediction of transverse cracking. The goodness of fit was further examined through the 
significant testing and various sensitivity analyses of pertinent explanatory parameters. The 
tentatively proposed predictive models appeared to reasonably agree with the pavement 
performance data although their further enhancements are possible and recommended.  

INTRODUCTION  

Performance predictive models have been used in various pavement design, evaluation, 
rehabilitation, and network management activities. Transverse cracking is one of the major 
distress types for jointed concrete pavements primarily caused by the accumulated traffic 
loads and environmental effects. Extensive research has been conducted to predict the 
occurrence of this distress type using various empirical and mechanistic-empirical approaches.  

Conventional predictive models usually correlate transverse cracking to accumulated 
traffic, fatigue damage, environmental effects, and several other design parameters (1, 2, 3). 
As pavement design evolves from traditional empirically based methods toward mechanistic-
empirical, the equivalent single axle load (ESAL) concept used for traffic loads estimation is 
no longer adopted in the recommended Mechanistic-Empirical Pavement Design Guide 
(MEPDG) (NCHRP Project 1-37A) (4). The success of the new design guide considerably 
depends upon the accuracy of pavement performance predictions. Thus, this study will first 
investigate its goodness of fit and strive to develop improved transverse cracking prediction 
models for jointed concrete pavements using the Long-Term Pavement Performance (LTPP) 
database (http://www.datapave.com or LTPP DataPave Online) (5-7). 

BRIEF REVIEW OF EXISTING MECHANISTIC-EMPIRICAL PREDICTION 
MODELS 

The NCHRP Project 1-19 (1) was conducted with the primary objective of developing a 
system for statewide and nationwide evaluation of concrete pavement performance. A total of 
410 JPCP and JRCP pavement sections representing 1297 miles of concrete pavement were 
collected from six states distributed in various climatic regions including Illinois, Georgia, 
Utah, Minnesota, Louisiana, and California. Eight additional JRCP pavement sections from 
Nebraska were also included in this database. The combined data represent about six percent 
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of the total Interstate concrete pavements in the continental U.S. Several combinations of 
multiple regression, stepwise regression, and nonlinear regression techniques were used to 
develop various pavement performance prediction models using the SPSS statistical package. 
The following models were developed for the prediction of transverse cracking: 
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In which, CRACKSJP is the total length of transverse cracking including low, medium, 
and high severities (ft/mile), ESAL is the accumulated 18-kip ESALs (millions), SOILCRS is 
the subgrade classification (1 for A1-A3 coarse-grained soil, 0 for A4-A7 fine-grained soil) , 
TRANGE is the yearly temperature tange (oF), RATIO is the stress ratio defined as the ratio 
of Westergaard edge stress versus concrete modulus of rupture, FI is the freeze index (oF-
days). CRACKSJR is the sum of medium and high severity transverse cracking (ft/mile), 
JTSPACE is the mean transverse joint spacing (ft), ASTEEL is the cross area of reinforcing 
steels (in2/ft width), THICK is the slab thickness (in), PUMP represents the pumping status (0 
for no pumping, 1, 2, and 3 for low, medium, and high severity pumping, respectively), 
BASETYP represents base types (0 for granular base, 1 for treated base), and AGE is the 
pavement age (years). R2 is the coefficient of determination, SEE is the standard error of 
estimates, and N is the number of observations. 

For the calculation of Westergaard edge stress, a single wheel load of 9,000 lbs 
(40kN), a concrete modulus of elasticity of 4.2 Mpsi (28.9 GPa), a Poisson’s ratio of 0.2, and 
a load radius of 6.4 in. (16.36 cm) were used. For JPCP model, the increase of slab thickness 
will result in stress reduction and thus significantly reduce the occurrence of transverse 
cracking. Sensitivity analysis also indicates that if the concrete modulus of rupture is below 
600 psi (4.13 MPa) the stress ratio becomes higher which will result in more transverse 
cracking. With better drainage in coarse-grained soil or base type, the possibility of pumping 
and loss of support are reduced and so does the occurrence of transverse cracking. 

However, field-collected pavement database may not contain a wide range of design 
parameters which may limit the inference space and the results of data interpretation. To 
remedy this problem, starting from 1987, the LTPP program has been collecting a national 
pavement database in a factorial format with wider ranges of pavement designs, materials, 
and climatic zones. More than 2,400 asphalt and Portland cement concrete pavement test 
sections across the North America have been monitored. Very detailed information about 
original construction, pavement inventory data, materials and testing, historical traffic counts, 
performance data, maintenance and rehabilitation records, and climatic information have been 
collected. In the NCHRP project P-393 (2), an early sensitivity analysis study of the LTPP 
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database was conducted and the following models were developed for the prediction of 
transverse cracking: 
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In which, PCRACKED is the percent of slabs with transverse cracking for JPCP 
pavements (%), FD is the estimated cumulative fatigue damage, k is the number of axle load 
type, ni is the expected number of load repetitions under different axle load types, and Nfi is 
the corresponding maximum allowable number of repetitions. CRACKSJR is the number of 
medium and high severity transverse cracking (no./mile), PSTEEL is the percent of 
longitudinal reinforcing steel (%), PRECIP is the average annual precipitations (in), 
KSTATIC is the modulus of subgrade reaction (psi/in).  

Westergaard edge stress and curling stress equations (8) were used to account for the 
combination effects of loading and thermal curling. Table 1 shows the recommended 
temperature gradients in different climatic zones and slab thicknesses. A single wheel load of 
9,000 lbs (40 kN) and a slab thermal expansion coefficient of 5.5*10-6 (1/℉) were used in the 
analysis. Cumulative fatigue damage is determined by adding the damage caused by each 
individual load application based on Miner’s hypothesis accordingly. Slab thickness and the 
modulus of rupture are important factors affecting the calculating of fatigue damage and the 
estimating of transverse cracking. Sensitivity analysis also indicated that lower modulus of 
subgrade reaction or lower percentage of reinforcing steel will result in higher deflection, 
larger crack width, and thus more transverse cracking for JRCP pavements. Similar 
conclusions may be achieved for pavements with higher traffic and precipitations as well. 

In the recommended MEPDG (4), both bottom-up and top-down cracking are 
considered for the prediction of JPCP transverse cracking. No prediction model was proposed 
for JRCP pavements. The fatigue cracking damage for JPCP is determined in an incremental 
manner based on more complicated Axle Load Spectra (ALS) concept. Various artificial 
neural networks models were developed based on the ISLAB2000 finite element model to 
compute critical stresses and deflections. Monthly damage is computed for different axle 
loads, load positions, and equivalent temperature differences over the analysis period. Traffic 
data is further processed to determine equivalent number of single, tandem, and tridem axles. 
Hourly pavement temperature profiles generated from the Enhanced Integrated Climate 
Model (EICM) is converted to monthly equivalent linear temperature differences. Monthly 
relative humidity data is used to account for the effects of seasonal changes in moisture 
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conditions on differential shrinkage and is also converted to effective temperature difference. 
The proposed model is briefly summarized as follows: 

TABLE 1 Assumed Temperature Gradients in Different Climatic Zones (2) 
Climatic Zones Slab Thickness (in) Assumed Temperature Gradient (℉/in) 

8 1.4 
9 1.3 
10 1.21 
11 1.11 

Non-Freeze 

12 1.01 
8 1.13 
9 1.05 
10 0.96 
11 0.87 

Freeze 

12 0.79 
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In which, ni, j, k, l, m, n is the applied number of axle loads under each condition: i is for 
age to account for change in modulus of rupture, layer bond condition, and deterioration of 
shoulder load transfer efficiency. j represents month to account for change in base and 
effective dynamic modulus of subgrade reaction. k is for axle type (single, tandem, and tridem 
for bottom-up cracking; short, medium, and long wheelbase for top-down cracking). l 
represents load level for each axle type, m is for temperature difference, n is for traffic path. 
Ni, j, k, l, m, n is the corresponding allowable number of load applications determined by the 
following field calibrated fatigue mode. MRi is the PCC modulus of rupture (psi) at age i and 
σi, j, k, l, m, n is the estimated stress (psi) at each condition. 
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DATABASE PREPARATION 

Initially, the DataPave 3.0 program was used to prepare a database for this study. However, in 
order to obtain additional variables and the latest updates of the data, the Long-Term 
Pavement Performance database retrieved from http://www.datapave.com (or LTPP DataPave 
Online, Standard Release 18.0) (6) became the main source for this study. There are 8 general 
pavement studies (GPS) and 9 specific pavement studies (SPS) in the LTPP program. Of 
which, only jointed plain concrete pavements (GPS3) and jointed reinforced concrete 
pavements (GPS4) were used for this study. The database is implemented in an information 
management system (IMS) which is a relational database structure using ORACLE program. 
However, the standard releases are in Microsoft Access database structure. Automatic 
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summary reports of the pavement information may be generated from different IMS modules, 
tables, and data elements.  

The thickness of pavement layers was obtained from the IMS Testing module rather 
than the IMS Inventory module to be consistent with the results of Section Presentation 
module in the DataPave 3.0 program. Several other material properties such as the modulus of 
rupture, plasticity index, percent passing no. 4 sieve, etc. were queried from the Inventory 
module. Detailed traffic counts and equivalent single axle load (ESAL) were obtained from 
the Traffic module. The cumulated ESAL during the performance analysis period was 
calculated by multiplying pavement age with mean yearly ESAL (or kesal) which could be 
easily estimated from the database. Environmental data were retrieved from the IMS Climate 
module and the associated Virtual Weather Station (VWS) link.  

Since there are distinct differences in the distress data collected from two methods of 
distress data collection, i.e., both manual survey (MON_DIS_JPCC_REV) and photographic 
survey (MON_DIS_PADIAS42_JPCC) (9). Although techniques in collecting and 
interpreting LTPP photographic distress data may have been improved (10), only manual 
survey data is used in this study for simplicity and consistency reasons. The transverse 
cracking data (low, medium, and high severities for JPCP and medium and high severities for 
JRCP) was obtained from MON_DIS_JPCC_REV table in the IMS Monitoring module. 
Maintenance and rehabilitation activities could effectively reduce the distress quantities. Thus, 
the records in both Maintenance and Rehabilitation modules were used to assure that this 
study only chose the performance data of those sections without or before major 
improvements. For the purpose of this study, a Microsoft Excel summary table containing the 
pavement inventory, material and testing, traffic, climatic, and distress data was created using 
the relational database features of the Access program. The Excel table was then stored as S-
Plus datasets (11) for subsequent analysis. The summary, table, cor, plot, pairs, and coplot 
functions were heavily utilized to summarize the information of interest and to provide more 
reliable data for this study.  

A data cleaning process must be conducted before any preliminary analysis or 
regression analysis can be performed. With the help of graphical representation, transverse 
cracking data were plotted against surveyed years for each section in the database with 
additional information displayed. For example, a plot as shown in Figure 1 was used to 
examine the distress trends in order to identify possible data errors. The state code, SHRP 
identification number, modulus of rupture (MPa), slab thickness (cm), construction year, and 
mean yearly ESAL (thousands) are labeled in each plot, respectively. Each section was 
carefully examined. Two additional codes were assigned to each section to indicate the 
findings of the examination, i.e., whether the transverse cracking is reasonable according to 
the distress history, or which year of data is questionable and could be deleted if necessary. 
For example, comparing the first three data points of pavement section 6/3005 with the 
remaining data, it was found that this section probably had some maintenance or rehabilitation 
activities although not recorded in the database. Data correction and preparation were made in 
a way that could be easily traced back. By doing so, different subsets of the final database 
providing more reliable data might be analyzed for different purposes. 

COMPARISON OF LABORATORY TESTED AND BACKCALCULATED MODULI  

The modulus of each pavement layer backcalculated using the ERESBACK 2.2 program (12) 
was retrieved from the IMS Monitoring module. The laboratory tested layer moduli were 
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compared with the backcalculated moduli so as to have a better understanding of their 
associated variability in this study. The variability of the relationship between the laboratory 
tested (or static) and backcalculated (or dynamic) moduli could not be ignored. Figure 2(a)-(c) 
depicts the average ratios are approximately 1.4, 1.5, and 1.5 for surface, subbase, and 
subgrade layers for dense liquid foundation, respectively. Note that very few laboratory tested 
modulus of subgrade reaction are available in the database. Likewise, Figure 2(d)-(f) depicts 
the average ratios are roughly 1.0, 1.1, and 3.0 for surface, subbase, and subgrade layers for 
elastic solid foundation, respectively (7).  For consistency reasons, the recommendation of 
dividing the backcalculated modulus of subgrade reaction (or k-value) by 2 as the static k-
value by AASHTO (13) was used in the calculation of stress ratio in this study.  
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FIGURE 1 Some transverse cracking history of JPCP pavements. 

RELATIONSHIP BETWEEN ELASTIC MODULUS AND MODULUS OF 
SUBGRADE REACTION  

For practical concerns, a relationship between the elastic modulus and the modulus of 
subgrade reaction is often needed. According to the literature (12), the following empirical 
relationship was developed from the GPS and SPS data analysis: 
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0.296Ek
2

s

===

=
 (7)  

In which, k is the modulus of subgrade reaction (MPa/m) and Es is the subgrade elastic 
modulus (MPa). According the available GPS data, very good agreements have been achieved 
using the above relationship.  

Nevertheless, Barenberg (14) have indicated the theoretical difference using elastic 
solid foundation or dense liquid foundation for having same maximum deflections in 
backcalculation analysis. Assuming a Poisson ratio of 0.5 for subgrade, a Poisson ratio of 0.15 
for concrete slab, and the elastic modulus of the slab is 4 Mpsi (27.6 GPa), the following 
relationship was derived after some simplification process.  

k*h*7.283E 3/4
s =  (8)  
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In which, k is the modulus of subgrade reaction (pci), Es is the subgrade elastic 
modulus (psi), and h is the slab thickness (in). As shown in Figure 3(a), the effect of slab 
thickness has to be considered in such a relationship. 
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FIGURE 2 Comparison of laboratory tested and backcalculated layer moduli of (a) 

surface, (b) subbase, and (c)subgrade for dense liquid foundation; and (d), (e), (f) for 
elastic solid foundation, respectively.  
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The aforementioned relationship was further verified by comparing the backcalculated 
subgrade elastic moduli with the backcalculated modulus of subgrade reaction from the LTPP 
database. Slab thickness did have significant effects on this relationship as shown in Figure 
3(b). Consequently, the following relationship is developed using regression techniques. In 
which, k is the modulus of subgrade reaction (MPa/m), Es is the subgrade elastic modulus 
(MPa), and h is the slab thickness (cm). 

138N 15.87,SEE 0.9524,R :Statistics

h)*0.9015(kE
2

3/4
s

===

=
 (9)  

 (a) (b)  

    
Backcalculated k-value (MPa/m)

B
ac

kc
al

cu
la

te
d 

E
sg

 (
M

P
a)

20 40 60 80 100 120 140 160

10
0

20
0

30
0

40
0

50
0

Slab Thickness

18~23cm
23~27cm
27~32cm
32~37cm

 
FIGURE 3 Comparison of elastic solid foundation versus dense liquid foundation: (a) 

theoretical comparison (14); (b) backcalculated results. 

PRELIMINARY ANALYSIS OF THE FATIGUE CRACKING DATABASE 

Univariate Data Analysis 

Univariate data analysis consists of statistical methods for describing the distribution and 
spread of each individual variable. Some basic descriptive statistics of JPCP pavements 
regarding the data range, its variation, and the number of observations for each individual 
variable are given in Table 2. Univariate data analysis procedure is often used to investigate 
the possibility of data errors and potential distribution problem for each variable considered in 
a regression analysis. A few extreme (or unusual) data points may be identified or deleted 
from the analysis. In which, age stands for pavement age (years); kesalpyr is the yearly 
ESALs (thousands); cesal is the cumulative ESALs (millions); jtspace is the transverse joint 
spacing (m); hpcc is the slab thickness (cm); fi is yearly freezing index (oC-days); precip is 
mean annual precipitation (mm); kstatic is the modulus of subgrade reaction (MPa/m); trange 
is the difference of maximum and minimum mean annual temperature (oC); days32 is the 
number of days temperature above 32 oC; ft is yearly freeze-thaw cycle; mr is the concrete 
modulus of rupture (MPa); ratio is stress ratio; act.crack is the percent of cracked slabs (%). 

A graph is always far more perceptible than thousands of numbers. A single plot 
which well describes the spread of the data may be created by combining these univariate 
statistics with a histogram. A simplified distribution plot which graphically displays the 
variability of data including median, lower and upper quantiles, 95 percent confidence 
intervals, and extreme points (if any) may be made in a boxplot. A boxplot displays not only 
the location and spread of the data but also skewness as well. A histogram only displays a 
rough and crude shape of the distribution of data. To have a smoother look, a continuous 
curve of the nonparametric estimate of the probability density may also be obtained. A normal 



Lee, Ker, and Lin 

TRB 2008 Annual Meeting – Initial Submittal for Review 

10

probability plot or a quantile-quantile plot can be used to have a quick visual check on the 
assumption of normal distribution. If the distribution is close to normal, the plot will show 
approximately a straight-line relationship. The distribution of transverse cracking (act.crack) 
of JPCP pavements is shown in Figure 4. The solid horizontal line in the box plot indicates 
the median of the data whereas the upper and lower ends of the box show the upper and lower 
quantiles, respectively. These plots reveal a relatively skewed distribution for actual 
transverse cracking. 
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FIGURE 4  Exploratory data analysis: transverse cracking of JPCP pavements. 

Bivariate and Multivariate Analysis 

A correlation matrix of these variables is also given in Table 2. In addition, trimmed 
correlation matrices show the variable correlations after a certain portion of influential data 
points or possible outliers are eliminated (say 3 percent in this example) such that more 
reliable indices of the correlations are obtained. Note the difference between the resulting 
traditional correlation matrix and trimmed correlation matrix. A scatter plot matrix can 
graphically represent their relationships and scatters. Applying a data smoothing technique 
(lowess) on the same scatter plot matrix, the pairwise relationships as shown in Figure 5 
become clearer and possible data errors may also be identified. In which, age, cesal, trange, 
and ft have better correlations with actual transverse cracking (act.crack), although very high 
variations are still observable. The slab thickness (hpcc) is highly correlated with stress ratio 
(ratio) and transverse joint spacing (jtspace) is also highly correlated with annual precipitation 
(precip). Special cautions are needed during the modeling process to avoid potential 
collinearity problems.  

INVESTIGATION OF THE GOODNESS OF FIT OF THE EXISTING MODELS 

To investigate the goodness of predictions, the aforementioned predictive models given in 
equations (1) to (4) were used to predict the occurrence of transverse cracking and the results 
were plotted against the actual observed data. Figure 6(a)-(b) shows the goodness of 
prediction using NCHRP 1-19 models for JPCP and JRCP pavements, respectively. Similarly, 
Figure 6(c)-(d) depicts the results of this comparison using P-393 models for JPCP and JRCP 
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pavements. Visual graphical techniques such as condition plots were used to assist in the 
identification of the factors affecting the goodness of predictions. For example, it was found 
that the circled data with relatively high predictions in Figure 6(d) was because of the very 
small longitudinal reinforcement.  

TABLE 2  Univariate Statistics and Multiple Correlations of JPCP Pavements 
(a) Univariate Statistics: 
            N   MEAN STD DEV       SUM    MIN     MAX  
      age 393  16.44    6.34   6460.90   2.34   35.64 
 kesalpyr 393 485.72  433.73 190886.02  20.21 2501.62 
    cesal 393   7.83    7.45   3077.23   0.16   33.90 
  jtspace 393   5.02    0.83   1972.18   3.51    6.55 
     hpcc 393  24.22    2.97   9518.14  16.26   36.32 
       fi 393 246.92  367.12  97039.23   0.00 1777.22 
   precip 393 883.58  428.66 347248.12 118.71 1725.67 
  kstatic 393  33.80   14.79  13281.69  12.75   81.58 
   trange 393  12.87    2.08   5058.77   8.40   18.04 
   days32 393  43.88   31.41  17245.62   0.15  174.35 
       ft 393  68.31   44.00  26846.65   0.00  173.13 
       mr 393   4.46    0.41   1754.72   3.03    5.88 
    ratio 393   0.44    0.10    173.40   0.21    0.77 
act.crack 393   5.71   16.22   2242.50   0.00  100.00 
 
(b) Correlation Matrix:  
            age cesal jtspace  hpcc    fi precip kstatic trange    ft    mr ratio act.crack  
      age  1.00  0.26    0.16 -0.13 -0.10   0.13   -0.18  -0.17 -0.11 -0.14  0.17      0.16 
    cesal  0.26  1.00    0.02  0.17 -0.27  -0.17    0.06   0.37 -0.13 -0.12 -0.20      0.33 
  jtspace  0.16  0.02    1.00  0.02 -0.18   0.68    0.20  -0.21 -0.18 -0.10 -0.09      0.01 
     hpcc -0.13  0.17    0.02  1.00 -0.07  -0.01    0.16   0.01  0.00  0.00 -0.86     -0.02 
       fi -0.10 -0.27   -0.18 -0.07  1.00  -0.27   -0.24  -0.16  0.46 -0.07  0.21     -0.06 
   precip  0.13 -0.17    0.68 -0.01 -0.27   1.00    0.20  -0.58 -0.40  0.01 -0.02     -0.02 
  kstatic -0.18  0.06    0.20  0.16 -0.24   0.20    1.00   0.02 -0.13  0.09 -0.37      0.03 
   trange -0.17  0.37   -0.21  0.01 -0.16  -0.58    0.02   1.00  0.36  0.02 -0.10      0.20 
       ft -0.11 -0.13   -0.18  0.00  0.46  -0.40   -0.13   0.36  1.00  0.04  0.00      0.19 
       mr -0.14 -0.12   -0.10  0.00 -0.07   0.01    0.09   0.02  0.04  1.00 -0.38     -0.03 
    ratio  0.17 -0.20   -0.09 -0.86  0.21  -0.02   -0.37  -0.10  0.00 -0.38  1.00      0.00 
act.crack  0.16  0.33    0.01 -0.02 -0.06  -0.02    0.03   0.20  0.19 -0.03  0.00      1.00 
 
(c)Trimmed Correlation Matrix (Deleted 3 Percent of the Data): 
            age cesal jtspace  hpcc    fi precip kstatic trange    ft    mr ratio act.crack  
      age  1.00  0.30    0.20 -0.11  0.05   0.16   -0.18  -0.17 -0.13 -0.16  0.19      0.18 
    cesal  0.30  1.00    0.04  0.26 -0.15  -0.18    0.11   0.43 -0.14 -0.08 -0.25      0.30 
  jtspace  0.20  0.04    1.00  0.05 -0.14   0.71    0.22  -0.19 -0.16 -0.16 -0.09      0.02 
     hpcc -0.11  0.26    0.05  1.00 -0.04  -0.05    0.21   0.10  0.04  0.09 -0.88      0.08 
       fi  0.05 -0.15   -0.14 -0.04  1.00  -0.27   -0.15  -0.13  0.60  0.10  0.15      0.18 
   precip  0.16 -0.18    0.71 -0.05 -0.27   1.00    0.18  -0.60 -0.42 -0.13  0.05     -0.08 
  kstatic -0.18  0.11    0.22  0.21 -0.15   0.18    1.00   0.11 -0.10  0.17 -0.38      0.14 
   trange -0.17  0.43   -0.19  0.10 -0.13  -0.60    0.11   1.00  0.39  0.06 -0.15      0.17 
       ft -0.13 -0.14   -0.16  0.04  0.60  -0.42   -0.10   0.39  1.00  0.17 -0.05      0.16 
       mr -0.16 -0.08   -0.16  0.09  0.10  -0.13    0.17   0.06  0.17  1.00 -0.38      0.19 
    ratio  0.19 -0.25   -0.09 -0.88  0.15   0.05   -0.38  -0.15 -0.05 -0.38  1.00     -0.03 
act.crack  0.18  0.30    0.02  0.08  0.18  -0.08    0.14   0.17  0.16  0.19 -0.03      1.00 

The prediction accuracy of the proposed models implemented in the recommended 
MEPDG (4) was further investigated. To avoid undesirable misunderstanding of the new 
guide’s prediction algorithm due to the complexity involved, it was decided to directly use the 
MEPDG software for the prediction of transverse cracking. The beta version of the software 
could be downloaded from http://www.trb.org/mepdg/ software.htm. A total of 22 JPCP 
pavement sections containing 102 data points were randomly selected for this analysis. The 
goodness of transverse cracking prediction using NCHRP Project P-393 models as well as the 
recommended MEPDG models is shown in Figure 6(e)-(f). Apparently, the prediction 
accuracy of the existing prediction models was found to be inadequate. 
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DEVELOPMENT OF IMPROVED TRANSVERSE CRACKING MODELS 

The occurrence of transverse cracking in field depends on various factors namely traffic, 
environment, structure, construction, maintenance and rehabilitation. Even though the use of 
cumulative fatigue damage based on Miner’s hypothesis and more complicated Axle Load 
Spectra (ALS) concept seems to be a very logical approach, the integration of which with 
monthly or seasonal environmental factors such as humidity and temperature differentials 
often resulted in more variations in the predictions of transverse cracking as shown in Figure 
6(c), (e), and (f) due to many uncertainties involved.   
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FIGURE 5  Using scatter plot smoother (lowess) on the scatter plot matrix for JPCP 
pavements. 

To develop a more reliable predictive model for practical engineering problems, Lee 
and Darter (15, 16) proposed a predictive modeling approach to incorporate robust (least 
median squared) regression, alternating conditional expectations, and additivity and variance 
stabilization algorithms into the modeling process. The robust regression was proposed due to 
its favorable feature of analyzing highly contaminated data by detecting outliers from both 
dependent variable and independent variables. Through the iterative use of the combination of 
these outlier detection and nonparametric transformation techniques, it was believed that 
some potential outliers and proper functional forms might be identified. Subsequently, 
traditional regression techniques can be easily utilized for model development. Nevertheless, 
many preliminary trials using these regression techniques have shown extreme difficulty to 
achieve a satisfactory predictive model for this set of data. 

Exploratory data analysis of the response variable as shown in Figure 4 has indicated 
that the normality assumption with random errors and constant variance using conventional 
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regression techniques might not be appropriate for prediction modeling. The distribution of 
transverse cracking was tested for departures from normality using Shapiro and Wilk’s W-
statistic (11). Various transformations including logarithm of the transverse cracking were 
tested, although the W-statistic still indicated that transverse cracking is not lognormal 
distributed either. Due to the data collecting nature of transverse cracking, it could be treated 
as rate data, i.e., percent of cracked slab. Agresti suggested that “when events of a certain type 
occur over time, space, or some other index of size, it is often relevant to model the rate at 
which events occur,” and using Poisson regression for rate data is an appropriate decision (17).  
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FIGURE 6 Comparison of prediction results using (a) NCHRP 1-19 JPCP; (b) NCHRP 
1-19 JRCP; (c) P-393 JPCP; (d) P-393 JRCP; (e) P-393 JPCP; and (e) DG2002 models.  
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Preliminary Analysis Using Poisson Regression Techniques 

Therefore, generalized linear model (GLM) (18) along with the assumption of Poisson 
distribution was adopted in this analysis. In which, a Poisson loglinear model is a GLM that 
assumes a Poisson distribution for the response variable and uses the log link. Many factors 
including age, kesalpyr, cesal, jtspace, hpcc, fi, precip, kstatic, trange, days32, ft, basetype, 
stype, edgestress, mr, ratio, and psteel were considered in the beginning trial analysis. In 
which, basetype represents base types (0 for granular base, 1 for treated base); stype 
represents subgrade types (1 for A1-A3 coarse-grained soil, 0 for A4-A7 fine-grained soil); 
edgestress is the estimated Westergaard edge stress (MPa); and the remaining variables are as 
previously defined. After going through several trails in eliminating insignificant and/or 
inappropriate parameters from both statistical and engineering viewpoints, the following 
models were obtained: 

5402.1  Deviance Residual 8138.5,  Deviance Null 393,N :Statistics 

*031.1*1999.0*01284.0*001209.0

*001317.0*1015.0105.6)ln(

===
++++

++−=
ratiotrangeftprecip

kesalpyragePCRACKED

 (10) 

2991.3  Deviance Residual 5391.9,  Deviance Null ,511N :Statistics

*26.10

*2326.0*02152.0*06729.09396.0)ln(

===
−

+++−=
psteel

trangeftcesalCRACKSJR

 (11) 

In which, PCRACKED is the percent of cracked slabs for JPCP pavements (%); 
CRACKSJR is the number of medium and high severity transverse cracking (no./km). The 
dispersion parameter for Poisson family was taken to be 1. Of which, a total of 74, 43, 114, 
and 162 data points were obtained from Dry-Freeze, Dry-NonFreeze, Wet-Freeze, and Wet-
NonFreeze zones for JPCP pavements, whereas the performance data of JRCP pavements 
consist of only 80 and 71 observations from Wet-Freeze and Wet-NonFreeze zones, 
respectively. 

Since the primary assumption of the above preliminary GLM models is that a linear 
function of the parameters was used in the model. Generalized additive model (GAM) extends 
GLM by fitting nonparametric functions using data smoothing techniques to estimate the 
relationship between the response and the predictors (19). To further enhance the model fits, 
generalized additive model (GAM) techniques were adopted in this analysis. Box-Cox power 
transformation technique was routinely utilized to estimate a proper, monotonic 
transformation for each variable based on the resulting preliminary GAM model. The 
transverse cracking data was refitted with these transformed predictors using generalized 
linear model (GLM) techniques. Visual graphical techniques as well as the systematic 
statistical and engineering approach proposed by Lee and Darter (15, 16) were frequently 
adopted during the prediction modeling process. A plot of residuals versus the fitted values 
can be used to check the adequacy of the model. If any curvature is observed, then the model 
might be improved by adding additional, nonlinear terms to the model.  

After considerable amount of trails, the following models were separately developed 
for the transverse cracking prediction of JPCP and JRCP pavements. As shown in Figure 7, a 
plot of the observed versus the fitted values is provided to illustrate the goodness of the fit. 
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FIGURE 7 Goodness of fit of the proposed model for: (a) JPCP and (b) JRCP pavements. 

To further improve the model fits, it is possible to develop separate models for 
different climatic zones to account for other factors not considered in the above model 
implicitly. For example, the following two models could be subsequently developed using the 
same functional forms with somewhat better regression statistics for JPCP pavements in Wet-
NonFreeze zone and JRCP pavements in Wet-Freeze zone, respectively. Nevertheless, it is 
still possible to develop better and more refined models with more efforts in identifying other 
important factors and functional forms under different climatic conditions. 
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Sensitivity Analysis of the Tentatively Proposed Models 

The goodness of the model fit was further examined through the significant testing and 
various sensitivity analyses of pertinent explanatory parameters. Some plots showing the 
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sensitivity of the various factors in the tentatively proposed models, i.e., equations (12) and (13), 
are presented in Figure 8. These plots were prepared based on the range of the actual data while 
setting the remaining parameters to the corresponding mean values. The plots show the 
relationships among annual temperature range (trange), yearly ESALs (kesalpyr), stress ratio 
(ratio), pavement age (age) for the JPCP model, and yearly freeze-thaw cycle (ft), cumulated 
ESAL (cesal), and percent of reinforcing steel (psteel) for the JRCP model. The general trends of 
these effects seem to be fairly reasonable.   
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FIGURE 8 Sensitivity analysis of the proposed model for: (a)-(b) JPCP; and (c)-(d) 

JRCP. 

DISCUSSIONS AND CONCLUSIONS 

Even though the use of cumulative fatigue damage based on Miner’s hypothesis and more 
complicated Axle Load Spectra (ALS) concept as recommended by the MEPDG seems to be 
a very logical approach, the integration of which with monthly or seasonal environmental 
factors such as humidity and temperature differentials often resulted in more variations in the 
predictions of transverse cracking due to many uncertainties involved. The prediction 
accuracy of the existing transverse cracking models for jointed concrete pavements was found 
to be inadequate and greatly in need for improvements.  

A relatively skewed distribution for actual transverse cracking was identified, which 
also indicated that normality assumption using conventional regression techniques might not 
be appropriate for this study. Thus, generalized linear model (GLM) and generalized additive 
model (GAM) along with the assumption of Poisson distribution were adopted for the 
modeling process. After many trials in eliminating insignificant and inappropriate parameters, 
the resulting proposed models included several variables such as pavement age, yearly ESALs, 
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cumulated ESALs, annual precipitation, freeze-thaw cycle, annual temperature range, stress 
ratio, and percent steel for the prediction of transverse cracking.  

The goodness of the model fit was further examined. The plot of the response versus 
fitted values indicated that the proposed model has substantial improvements over the existing 
models. Sensitivity analysis of the explanatory variables indicated their general trends seem to 
be fairly reasonable. The tentatively proposed predictive models appeared to reasonably agree 
with the pavement performance data although their further enhancements are possible and 
recommended. 

ACKNOWLEDGMENTS 

This study was sponsored by National Science Council, Taiwan, under the project titled 
“Development and Applications of Pavement Performance Prediction Models,” Phase II 
(NSC94-2211-E-032-014) and Phase III (NSC95-2211-E-032-061). 

REFERENCES 

1. Darter, M.I., Becker, J.M., and Snyder, M.B., Concrete Pavement Evaluation System 
(COPES), NCHRP Report No. 277, NCHRP Project 1-19, Washington, D.C., 1985. 

2. Simpson, A.L., Rauhut, J.B., Jordahl, P.R., Owusu-Antwi, E., Darter, M.I.,  Ahmad, R., 
Pendleton, O.J., and Lee, Y.H., Early Analyses of LTPP General Pavement Studies Data, 
Volume 3, Sensitivity Analyses for Selected Pavement Distresses, Contract No. P-020, 
Report No. SHRP-P-393, Strategic Highway Research Program, National Research 
Council, Washington, D.C., 1993. 

3. FHWA, Design and Construction of PCC Pavements, Volume III: Improving PCC 
Performance Models, Publication No. FHWA-RD- 98-113, 1999. 

4. ARA, Inc. ERES Consultants Division. “Guide for Mechanistic- empirical design of new 
and rehabilitated pavement structures,” NCHRP 1-37A Report, Transportation Research 
Board, National Research Council, Washington, D.C., 2004. 

5. FHWA. Distress Identification Manual for the Long-Term Pavement Performance 
Program, Publication No. FHWA-RD-03-031, 2003. 

6. FHWA. Long-Term Pavement Performance Information Management System: Pavement 
Performance Database Users Reference Guide, Publication No. FHWA-RD-03-088, 2004. 

7. Lin, C. H. Development of Performance Prediction Models for Rigid Pavements Using 
LTPP Database, Master Thesis, Tamkang University, Taiwan, 2007. (In Chinese) 

8. Huang, Y. H. Pavement Analysis and Design, 2nd Ed., Prentice Hall, New Jersey, 2004. 
9. Daleiden, J.F., and Simpson, A.L. (1994). “Evaluation of Strategic Highway Research 

Program--Long-Term Pavement Performance Surface Distress Data Collection 
Procedures, ” Transportation Research Record 1435, National Research Council, 
Washington, D.C., pp.8-15. 

10. Rada, G.R., Simpson, A.L., and Hunt, J.E. (2004). “Collecting and Interpreting Long-
Term Pavement Performance Photographic Distress Data: Quality Control-Quality 
Assurance Processes,” Transportation Research Record 1889, Transportation Research 
Board, National Research Council, Washington, D.C., pp. 97-105. 

11. Insightful Corp. S-Plus 6.2 for Windows: User’s Manual, Language Reference, 2003. 
12. FHWA, Backcalculation of Layer Parameters for LTPP Test Sections- Slab on Elastic 

Solid and Slab on Dense-Liquid Foundation Analysis of Rigid Pavements, Publication No. 
FHWA-RD-00-086, 2001. 

13. Barenberg, “Introduction to Concrete Pavement Design,” Proceedings, A Workshop on 
Modern Concrete Pavement Design, Tamkang University, May 3-4, 2000. 



Lee, Ker, and Lin 

TRB 2008 Annual Meeting – Initial Submittal for Review 

18

14. AASHTO, AASHTO Guide for Design of Pavement Structures, Published by the 
American Association of State Highway and Transportation Officials, 1993. 

15. Lee Y. H. Development of Pavement Prediction Models, Ph.D. Dissertation, University of 
Illinois, Urbana, 1993. 

16. Lee, Y. H., and M. I. Darter Development of Performance Prediction Models for Illinois 
Continuously Reinforced Concrete Pavements. In Transportation Research Record, No. 
1505, TRB, National Research Council, Washington, D.C., 1995, 75-84. 

17. Agresti, A. An Introduction to Categorical Data Analysis, John Wiley & Sons, Inc., 1996. 
18. Nelder, J. A., and R. W. M. Wedderburn, Generalized Linear Models, Journal of the 

Royal Statistical Society (Series A), Vol. 135, 1972, pp. 370-384. 
19. Venables, W. N., and B. D. Ripley. Modern Applied Statistics with S. 4th Ed., New York: 

Springer-Verlag, 2002. 
 


