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i INTRODUCTION

= Prediction Models: (pavement analysis,

design, rehabilitation,
PMS)

= Model Development Using Purely Empirical
and Mechanistic-Empirical Approaches

= Systematic Statistical and Engineering
Approach (Lee, 1993)

Model Development Using Purely Empirical
or Mechanistic-Empirical Concept (ee, 1993)
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Previous Work on Pavement
i Prediction Modeling

= Application of Modern Regression Techniques
= Using conventional “parametric” linear and nonlinear & several “robust” and
“nonparametric” regression techniques (Lee, 1993; etc.)
= Developed pavement performance and structural response prediction models
= Application of Artificial Neural Network (ANN) Techniques
= Pavement structural evaluation for simulated data:
= Often use original input parameters to generate the training and testing data.
= Some parameters were fixed to certain prescribed values to reduce the database size. Result in
limiting the inference space of the resulting model.
= Nevertheless, some literature also illustrated the advantages of using the principles of
dimensional analysis when generating the data.
= Some built-in functions including learning rate and momentum term which form key
neural network algorithm were not adequately investigated (Attoh-Okine, 1994;1.99§_I§L-_
= Adding many hidden layers gets the network to learn faster and the mean '%@Eﬁﬁg
square error becomes a little smaller, but the generalization ability of the "fﬁ'_;_j
network reduces. (Sorsa et al., 1991) 4




i PredICtIOﬂ MOdellng (continue ---)

Previous Work on Pavement

Ripley (1993) discussed many statistical aspects of neural networks and
tested it with several benchmark examples against traditional and modern
regression techniques and concluded that in one sense neural
networks are little more than non-linear regression and allied
optimization methods.

“That two-layer networks can approximate arbitrary continuous functions
does not change the validity of more direct approximations such as
statistical smoothers, which certainly ‘learn’ very much
faster” (Ripley, 1993).

Statistical and subject-related knowledge can be used to guide
modeling in most real-world problems and so enable much more
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convincing generalization and explanation, in ways which can never‘? ij{f;
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be done by ‘black-box’ learning systems (Ripley, 1993). =

OBJECTIVES

= To illustrate the benefits of incorporating the
principles of dimensional analysis, subject-
related knowledge, and statistical knowledge
into pavement prediction modeling process
= Using local regression & ANN techniques

= Case Studies:

= To improve the prediction accuracy of simulated
pavement deflections (using factorial 2-D and 3-D
finite element runs and BISAR runs for different455
pavement systems) %% W‘f’
=y
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Modern Regression & ANN Techniques

Projection Pursuit Regression

= Revised Two-Step Modeling Approach
Using PPR

Locally-Weighted Regression (loess)
= Concept of loess k-d tree algorithm

Statistical Software Used
= S-PLUS 6.1
= LOCFIT Program

= Artificial Neural Networks

= QNET2000 Program o AT
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QNET2000 Program =

Projection Pursuit Regression (PPR)

_ Mo
Y=Y+ By b(anX)+&
m=1
E g, (l0]=0,E [g, @lx0]=1
Minimizing the mean squared residuals:
_ Mo 2
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* capable of modeling variable interactions (Friedman and Stuetzle, 1981')‘-%*“




Revised Two-Step Modeling
Approach Using PPR (e parter, 1992)

= Step 1:
= Use Projection Pursuit Regression (PPR)
= Model the multi-dimensional response surface as a sum of several
smooth projected curves, graphically representable in 2-D.
= Step 2:

= Plausible functional forms and applicable boundary conditions may
then be easily identified and specified.

= Traditional linear, piecewise-linear, and nonlinear
regressions are then utilized to model each projected curve.

= Revised Step 2:

= Regression spline algorithm was adopted here to AT
assure smooth junctions at the change points. g _iijé’{-
Watetr
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Application of Locally-Weighted
Regression (LOESS) Technique

= An approach to regression analysis by local fitting
(Cleveland & Devlin ,1988; Cleveland & Grosse, 1991)

= A particular data structure called k-d tree is used for
partitioning space by recursively cutting cells in half by a
hyperplane orthogonal to one of the coordinate axes.

= Use a smoothing technique for fitting a nonlinear curve to
the data points locally, so that any point of the curve
depends only on the observations at that point and some
specified neighboring points.

= Provide much greater flexibility in fitting a multi-
dimensional response surface as a series of many sub-
divided regions with single smooth functions of all the .—”":—3‘*
predictors.
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Second predictor

Second predictor

Illustration of loess k-d tree
algorithm (Cleveland & Grosse, 1991)

First four cells

First predictor

Lo
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Artificial Neural Networks
= A flexible way to Input Hidden Output
generalize linear Layer Layer Layer

regression functions (but
with so many parameters)

= Commonly using
generalized delta rule or
the steepest descent of
gradient method (Back
Propagation Network, BPN)

= Training & Testing Data
(Over Learning Problem)

Min. —Z"y —¢’|




i Various Activation (or Transfer) Functions

(a) Step function (b) Logistic or sigmoid function

(c) Hyperbolic tangent function (d) Radial basis function

Applications of ANN & Modern
i Regression Techniques

= Rigid Pavement Deflection Prediction Models

R = Jeeu _ {ﬁ 1]
= Case I: 2-D Infinite slab Opnax et

R7:‘$FEM :f’[g, r L ﬂ]

I VAR A A

= Case Il: 2-D Finite slab | 5, .. (fa L b
R &y 3(?’ I 3]

« Case Ill: 3-D Finite slab ,_,|_EN’
12(1- )k

= Flexible Pavement Deflection Prediction Models g5
iREe,

= Case IV: BISAR Runs s
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i Case |: Data Preparation

= ILLI-SLAB FE Program

= Input parameters: = Using Dimensional
= P=40 kN, Analysis
= p=0.62 MPa, = a/t : 0.05~0.4 (step
= E= 13.78~48.23 GPa, 0.01)
« k=13.5~175.5 MN/m? = Lit=w/t=8
« h= 15.2~76.2 cm = /£:0~3.2 determined
= 1 determined by mesh ( by me)sh generatloﬂn_”
N=494
(N=12,329) Fras
)
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i Case |: Comparing ANN Models

ANN Type NET1 NET2
Outputs R R
Inputs E, k h,r ale, rl¢
. Training: 11,329 Training: 394
Data Points Monitoring: 1,000 Monitoring: 100
Hidden Layer (s) 2 1
Neurons in Each Hidden
Layer 12-12 6
Learning Cycle 30,000 10,000
Learning Rate 0.5 0.1
Modeling Time 6 hrs 43 min. 42 min.
RMS Training: 0.00290 Training: 0.00377
Monitoring: 0.00420 Monitoring: 0.00360
Coefficient of .
Determination, R2 0.999 0.9999 ,}_;;

'f-
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Note: Benefit of Using Dimensional Analysis (smaller & faster: su
16




Case I: Convergence Characteristics

Function Logistic or sigmoid | Hyperbolic tangent Radial basis / Step
Training RMS 0.00416 0.00405 Cannot converge
Monitoring RMS 0.00384 0.00411 NA
R-Squared 0.9999 0.9999 NA
Time 357 60" NA
.
2 =~ Hyperbolic Tangent Function Note:
. Convergence
°] characteristics of
EER various transfer
o functions
i —f":_" =
g t g E,i{l
8 : : T ; T T T ; ‘\\‘--"ﬁ
° o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 17

iteration

Case |: Convergence Characteristics

(continue ---)
Neurons in hidden layer 5 6 7 8 9 10
Training RMS 0.00416 0.00377 0.00524 0.00569 0.00554 0.00520
Monitoring RMS 0.00384 0.00360 0.00492 0.00529 0.00520 0.00490
R-Squared 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
Time 35" 42" 52" 60" 67" 82"
s o Fidden Node’s
T Nddenoder Note:

0.008

RMS
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Increase the # of
neurons does
NOT necessarily
improve the fit.

i Case II: Data Preparation

m ILLI-SLAB FE Program

= Using Dimensional
Analysis

a/t : 0.05~0.4
L/t : 2~7 (Step 1)
W/t @ 2~7 (Step 1)

r/¢-0~3.2 determined

by mesh generation

(N=2,227)
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Case Il: Convergence Characteristics
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RMS

0025

Case Il: Convergence Characteristics

(Continue --)

Training Convergence Diagram Testing Convergence Diagram

o ot L e 2k S e oo
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Note: Two hidden layer (with 8 neurons in layer 1) converges ok! 5"%“,’?&0{"
i
e

RMS

Case Il: Convergence Characteristics

(Continue --+)
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Testing Converengce Diagram
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Note: Using higher # of hidden layers and neurons sometimes lead %ﬁﬁﬁ?
to even worse fit, i.e., indication of over training to be avoided. N

Case Il: Loess Model

= Smoothing Parameter:
= span=0.1
= cell=0.01
m Regression Statistics:
« N =2,227
= equivalent number of
parameters = 31.9 )
= SEE = 0.006376
= R-squared =1

conetmgerrwy T

5 e v
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Case Il1: Data Preparation

= ABAQUS 3-D FE Program

= Using Dimensional
Analysis
= a/l :0.05, 0.1~0.5 (step
0.1)
= L/L=W/C : 2~8 (step 1)
= h/a: 0.5~6 (step 0.5)
= Maximum deflection (r=0)
(N=504)
g
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* Case Il1: Comparing ANN Models
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Note: Incorporating Subject Related Knowledge (1/R is bette‘r‘).f::ff.,“”-z’5

i Case I11; Proposed PPR Model
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Note: With regression spline (R2=0.9942, SEE=0.02241) *

* Case I11: Loess Model

= Smoothing Parameter:

= span=0.1 | ] V

= cell=0.1 e
= Regression Statistics: gy o] I

= N =504 : : :

= equivalent number of

parameters = 56.6

= SEE = 0.004784

. R:ysquared =1 ;%L
. %: w(sgd _ f{% % 2) ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ‘nz’;‘.%

i Case IV: Data Preparation

= Factorial BISAR Runs (Flexible Pavement Deflection)
= a/h,:0.2,0.4,08,1.2,18,24
= hy/h,: 0.5, 1.0, 1.5, 2.0, 4.0, 5.0
= E,/E4E,/E,: 0.5, 1.0, 2.0, 5.0, 10, 30, 50, 90, 140, 170
= Training Data = 3,600, Testing Data = 1,728
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i Case IV: Comparing ANN Models

ANN Type NET1 NET2 NET3
Outputs D, Log(D,) Log(D,)
Inputs E/E, EylEy, hy/hy, | EJJE,, ES/Es, hy/h,y, log(E,/E,), log(E,/E;),
a/h, a/h, h,/h,, a’h,
Hidden Layer(s) 3 3 2
Neurons in Each
Hidden Layer 20-10-5 15-10-5 12-6
Learning Cycle Cannot converge 200,000 27,000
Modeling Time > 24 hrs 10 hrs 26 min
Training: 0.0048 Training: 0.0040- F54p"

RMS

Monitoring: 0.0045 Monitoring: 0.0039%E

7
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Note: Benefit of Incorporating Statistical Knowledge (Power Transformation')’ 29

o

Benefit of Incorporating Statistical

i Knowledge

Box and Cox Transformation

(oSS

Log Likeinood

Regressing E1/E2(Lambda) on DO

A Lo

; a8
Note: Normality test (Q-Q plot) & Box-Cox Power Transformation ==

o

30

Comparing Convergence Characteristics
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i Case IV: Loess Model

= Smoothing Parameter:
« span=0.1 -
= cell=0.1 -

= Regression Statistics: ;
= N = 3,600
= equivalent number of =

parameters = 31.9
= SEE = 0.02792 Lll=
= R-squared =1 .

E E a
log(D,) = f,| log(=L), log(=2%), —~, —
og(Dy,) 4[ og( Ez) og( E3) hzj




Model Comparlson (Testlng Data)

i Concluding Remarks

= lllustrated the benefits of incorporating

= the principles of dimensional analysis,

= subject-related knowledge, and

= statistical knowledge

into pavement prediction modeling process

Proved to have higher accuracy

Required smaller data and less network training time

= Increasing the complexity of ANN models does »,;,&,
NOT necessarily improve the fit

i Concluding Remarks contne .

= Using higher # of neurons and hidden layers
sometimes lead to even worse fit
(indication of over training to be avoided)

= Reasonable good predictions can be achieved using
both ANN and modern regression techniques

= Statistical and subject-related knowledge can be
used to guide modeling and so enable much more
convincing generalization and explanation, in Waﬁ
which can never be done by “black-box” 5}“‘3
learning systems (Ripley, 1993) w“g]
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og Predicted Deflection(in

i NET2 Goodness of Fit (NET2)

i NET3 Goodness of Fit
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i Loess Model: Goodness of Fit
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