

Development of Fatigue Cracking Performance Prediction Models for Flexible Pavements Using LTPP Database

Dr. Hsiang-Wei Ker, Chihlee Inst. of Tech. Dr. Ying-Haur Lee, Tamkang Univ. Ms. Pei-Hwa Wu, Tamkang Univ. Taiwan, January 21~25, 2007

II. Review of Existing Models

• 1. Various models for predicting N_f

 $N_f = k_1 (\varepsilon_t)^{-k_2} \left| E^* \right|^{-k_3}$

Organization (Year)	k ₁	k ₂	k ₃
Asphalt Institute (1981)	0.0796	3.291	0.854
Shell Oil (1982)	0.0685	5.671	2.363
Belgian Road Research Center (1984)	4.92×10-14	4.76	0
UC-Berkeley (1984)	0.0636	3.291	0.854
Transport and Road Research Laboratory (1984)	1.66×10 ⁻¹⁰	4.32	0
Illinois (1987)	5×10-6	3.0	0
U.S. Army (1988)	478.63	5.0	2.66
Indian (1999)	0.1001	3.565	1.474
Mn/ROAD (2003)	2.83	3.21	0

			Model Development
Generalized Linea g(E(Y x)) = g(µ)	$ar Model (C)$ $= \beta_0 + \sum_{i=1}^{p} \beta_i x_i = \eta(x_i)$	GLM)	
Distribution	Link Function	Variance	
Normal/Gaussian	μ	1	
Binomial	$\log(\mu/(1-\mu))$	$\mu(1-\mu)/n$	
Poisson	log(μ)	μ	
Gamma	1/μ	μ^2	
Inverse Normal/Gaussian	$1/\mu^2$	μ³	
Quasi	g(μ)	$V(\mu)$	1.1
	1		17

(4b) Se	parate	e by d	ifferei	nt climat	tic zon	Model Develops	men
Zone	First Runs				Second Runs]
Variables	wet	dry	freeze	non-freeze	dry	Freeze	
age	+	+	_*	+	+	removed	1
kesal	+	-*	_*	+	removed	removed	
precip	+	+	+	+	+	+	
temp	+	+	+	+	+	removed	
epsilon.t	+		+	+	+	+	
ft	+	+	負*	+	+	removed	
visco						-	
temp.range						+	
: Insignif -: negative	icant correlation	+ 1 *:	: positive : different	correlation from expecta	tion	2	0

VI. Concluding Remarks

- Existing models for fatigue cracking predictions are inadequate using LTPP Database
- Relatively skewed distribution was identified, indicating that normality assumption is inappropriate
- GLM and GAM along with assumption of Poisson distribution and quasi-likelihood estimation method were adopted
- By eliminating insignificant and inappropriate parameters repeatedly, the resulting model only includes kesal, age, precip, temp, epsilon.t, and ft for predicting fatigue cracking
- Examined the goodness of fit
- Conducted sensitivity analysis
- Further Improvements are possible and recommended

