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ABSTRACT 

The main objective of this study is to develop improved faulting prediction models for jointed 
concrete pavements using the Long-Term Pavement Performance (LTPP) database. The retrieval, 
preparation, and cleaning of the database were carefully handled in a more systematic and automatic 
approach. The prediction accuracy of the existing prediction models implemented in the recommended 
Mechanistic-Empirical Pavement Design Guide (NCHRP Project 1-37A) was found to be inadequate. 
Exploratory data analysis of the response variables indicated that the normality assumption with 
random errors and constant variance using conventional regression techniques might not be 
appropriate for prediction modeling. Therefore, without assuming the error distribution of the response 
variable, several modern regression techniques including generalized linear model (GLM) and 
generalized additive model (GAM) along with quasi-likelihood estimation method and Poisson 
distribution were adopted in the subsequent analysis. Box-Cox power transformation and visual 
graphical techniques were frequently adopted during the prediction modeling process. By keeping 
only those parameters with significant effects and reasonable physical interpretations in the model, 
various tentative performance prediction models were developed. The resulting mechanistic-empirical 
model included several variables such as pavement age, yearly ESALs, bearing stress, annual 
precipitation, base type, subgrade type, annual temperature range, joint spacing, modulus of subgrade 
reaction, and freeze-thaw cycle for the prediction of joint faulting. The goodness of fit was further 
examined through the significant testing and various sensitivity analyses of pertinent explanatory 
parameters. The tentatively proposed predictive models appeared to reasonably agree with the 
pavement performance data although their further enhancements are possible and recommended.  

INTRODUCTION 

Performance predictive models have been used in various pavement design, evaluation, 
rehabilitation, and network management activities. Faulting is one of the major distress types for 
jointed concrete pavements primarily caused by the accumulated traffic loads and environmental 
effects. Extensive research has been conducted to predict the occurrence of this distress type using 
various empirical and mechanistic-empirical approaches. Conventional predictive models usually 
correlate joint faulting to accumulated traffic, joint types, environmental effects, and several other 
design parameters (Darter et al. 1985; Simpson et al. 1993; AASHTO 1998). As pavement design 
evolves from traditional empirically based methods toward mechanistic-empirical, the equivalent 
single axle load (ESAL) concept used for traffic loads estimation is no longer adopted in the 
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recommended Mechanistic-Empirical Pavement Design Guide (MEPDG) (NCHRP Project 1-37A) 
(ARA, Inc. 2004). The success of the new design guide considerably depends upon the accuracy of 
pavement performance predictions. Thus, this study will first investigate its goodness of fit and strive 
to develop improved faulting prediction models for jointed concrete pavements using the Long-Term 
Pavement Performance (LTPP) database (http://www.datapave.com or LTPP DataPave Online) 
(FHWA 2003, 2004; Lin 2007). 

BRIEF REVIEW OF EXISTING MECHANISTIC-EMPIRICAL PREDICTION MODELS 

The NCHRP Project 1-19 (Darter et al. 1985) was conducted with the primary objective of 
developing a system for statewide and nationwide evaluation of concrete pavement performance. A 
total of 410 JPCP and JRCP pavement sections representing 1297 miles of concrete pavement were 
collected from six states distributed in various climatic regions including Illinois, Georgia, Utah, 
Minnesota, Louisiana, and California. Eight additional JRCP pavement sections from Nebraska were 
also included in this database. The combined data represent about six percent of the total Interstate 
concrete pavements in the continental U.S. Several combinations of multiple regression, stepwise 
regression, and nonlinear regression techniques were used to develop various pavement performance 
prediction models using the SPSS statistical package.  

However, field-collected pavement database may not contain a wide range of design parameters 
which may limit the inference space and the results of data interpretation. To remedy this problem, 
starting from 1987, the LTPP program has been collecting a national pavement database in a factorial 
format with wider ranges of pavement designs, materials, and climatic zones. More than 2,400 asphalt 
and Portland cement concrete pavement test sections across the North America have been monitored. 
Very detailed information about original construction, pavement inventory data, materials and testing, 
historical traffic counts, performance data, maintenance and rehabilitation records, and climatic 
information have been collected. In the NCHRP project P-020 (Simpson et al. 1993), an early sensitivity 
analysis study of the LTPP database was conducted and the following models were developed for the 
prediction of joint faulting: 
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In which, FAULTD is the average joint faulting (in.) for dowelled jointed pavements; CESAL is 
the accumulated 18-kip ESALs (millions); JTSPACE is the average transverse joint spacing (ft); 
KSTATIC is the modulus of subgrade reaction (psi/in.); AGE is the pavement age (years); EDGESUP 
represents edge support (l for concrete shoulders; 0 for AC sholuders); DOWEL is the dowel diameter 
(in.); FAULTND is the average joint faulting (in.) for nondowelled jointed pavements; PRECIP is the 
average annual precipitations (in.); FI is the freeze index (oF-days); and DRAIN is for drainage type. 
Also note that N is the number of observations; R2 is the coefficient of determination, and SEE is the 
standard error of estimates. 

Based on the results of NCHRP 1-30 verification study using the LTPP database, the 1998 
AASHTO supplemental guide for rigid pavement structure and joint designs adopted the following 
two faulting models for dowelled and nondowelled jointed pavements, respectively: 
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Where, Cd is the modified AASHTO drainage coefficient; BSTRESS is the calculated maximum 

concrete bearing stress based on the following closed-form solutions (psi); BASE is for base type (0 
for unstabilized base, 1 for stabilized base); WIDENLANE is 0 if not widened or 1 if widened; hPCC is 
the slab thickness (in.); and DAYS90 is the number of days with maximum temperature above 90℉. 
The other remaining parameters are defined the same as before. (AASHTO 1998): 
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In which, fd is the distribution factor, )12/(122 +×= ldf . P is the applied wheel load, set to 9000 
lbs; T is percent transferred load, set to 0.45; Kd is the modulus of dowel support, set to 1.5 Mpsi/in 
(405 MPa/mm); BETA is the relative stiffness of the dowel-concrete system; OPENING is average 
transverse joint opening (in.); Es is  the modulus of elasticity of the dowel, set to 29 Mpsi; I  is the 
moment of inertia of dowel bar cross section (in4), 4)2/(*25.0 DOWELI π= ; l  is the radius of 
relative stiffness (in.), 25.023 )])1(*12/([ kEh μ−=l  ; h is the slab thickness (in.); μ is the Poisson’s 
ratio of the slab; k is the modulus of subgrade reaction (psi/in); CON is the adjustment factor due to 
base/slab frictional restraint, 0.65 if stabilized base or 0.80 if aggregare base ore lean concrete base 
with bond breaker; ALPHA is the PCC thermal expansion coefficient, set to 0.000006/℉; TRANGE 
is the annual temperature range (℉); and e is the PCC drying shrinkage coefficient, set to 0.00015 
strain. With better drainage in coarse-grained soil or base type, the possibility of pumping and loss of 
support are reduced and so does the occurrence of joint faulting. Sensitivity analysis of various 
parameters in the aforementioned models might be conducted. 

In the recommended MEPDG (ARA Inc. 2004), the transverse joint faulting for JPCP is 
determined in an incremental manner based on more complicated Axle Load Spectra (ALS) concept 
(FHWA 2000). A faulting increment is determined each month and its magnitude is affected by the 
current faulting level. The faulting at each month is determined as a sum of faulting increments from 
all previous months. No prediction model was proposed for JRCP pavements. Various artificial neural 
networks models were developed based on the ISLAB2000 finite element model to compute critical 
stresses and deflections. Monthly faulting increment is computed for different axle loads, load 
positions, and equivalent temperature differences over the analysis period. Traffic data is further 
processed to determine equivalent number of single, tandem, and tridem axles. Hourly pavement 
temperature profiles generated from the Enhanced Integrated Climate Model (EICM) is converted to 
monthly equivalent linear temperature differentials. Monthly relative humidity data is used to account 
for the effects of seasonal changes in moisture conditions on differential shrinkage and is also 
converted to effective temperature differentials. The joint load transfer efficiency (LTE) adjustment 
factor is also determined monthly. The proposed model is briefly summarized as follows: 
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In which, Faultm is  the mean joint faulting at the end of month m (in.); ΔFaulti is the incremental 
change (monthly) in mean transverse joint faulting during month i (in.); FAULTMAXi is the  maximum 
mean transverse joint faulting for month i (in.); FAULTMAX0 is the initial maximum mean transverse 
joint faulting (in.); EROD is the base/subbase erodibility factor; DEi is the  differential deformation 
energy accumulated during month i.; EROD  is the base/subbase erodibility factor; δcurling is the 
maximum mean monthly slab corner upward deflection PCC due to temperature curling and moisture 
warping; PS is the overburden on subgrade (lbs); P200 is the percent subgrade material passing #200 
sieve; WetDays is the average annual number of wet days (greater than 0.1 in. rainfall). C1 through C7 
and C12, C34 are national calibration constants; FR is base freezing index defined as percentage of time 
the top base temperature is below freezing (32 °F) temperature (Khazanovich et al. 2004). 

DATABASE PREPARATION 

Initially, the DataPave 3.0 program was used to prepare a database for this study. However, in 
order to obtain additional variables and the latest updates of the data, the Long-Term Pavement 
Performance database retrieved from http://www.datapave.com (or LTPP DataPave Online, Release 
18.0) (FHWA 2004) became the main source for this study. There are 8 general pavement studies (GPS) 
and 9 specific pavement studies (SPS) in the LTPP program. Of which, only jointed plain concrete 
pavements (GPS3) and jointed reinforced concrete pavements (GPS4) were used for this study. This 
database is currently implemented in an information management system (IMS) which is a relational 
database structure using the Microsoft Access program. Automatic summary reports of the pavement 
information may be generated from different IMS modules, tables, and data elements. 

The thickness of pavement layers was obtained from the IMS Testing module rather than the IMS 
Inventory module to be consistent with the results of Section Presentation module in the DataPave 3.0 
program. Several other material properties such as the percent passing no. 200 sieve were queried 
from the Inventory module. Detailed traffic counts and equivalent single axle load (ESAL) were 
obtained from the Traffic module. The cumulated ESAL during the performance analysis period was 
calculated by multiplying pavement age with mean yearly ESAL (or kesalpyr) which was estimated 
from the database. Environmental data were retrieved from the IMS Climate module and the 
associated Virtual Weather Station (VWS) link. The modulus of each pavement layer backcalculated 
using the ERESBACK 2.2 program was retrieved from the IMS Monitoring module. The laboratory 
tested layer moduli were compared with the backcalculated moduli so as to have a better 
understanding of their associated variability in this study. The variability of the relationship between 
the laboratory tested (or static) and backcalculated (or dynamic) moduli could not be ignored (Lin 
2007).  For the purpose of this study, the recommendation of dividing the backcalculated modulus of 
subgrade reaction (or k-value) by 2 as the static k-value was used.  

The transverse joint faulting data was obtained from MON_DIS_JPCC_FAULT_SECT table in 
the IMS Monitoring module. Maintenance and rehabilitation activities could effectively reduce the 
distress quantities. Thus, the records in both Maintenance and Rehabilitation modules were used to 
assure that this study only chose the performance data of those sections without or before major 
improvements. For the purpose of this study, a Microsoft Excel summary table containing the 
pavement inventory, material and testing, traffic, climatic, and distress data was created using the 
relational database features of the Access program. The Excel table was then stored as S-Plus datasets 
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(Insightful Corp. 2003) for subsequent analysis. The summary, table, cor, plot, pairs, and coplot 
functions were heavily utilized to summarize the information of interest for this study.  

A data cleaning process must be conducted before any preliminary analysis or regression analysis 
can be performed. With the help of graphical representation, joint faulting data were plotted against 
surveyed years for each section in the database with additional information displayed. For example, a 
plot as shown in Figure 1 was used to examine the distress trends in order to identify possible data 
errors. The state code, SHRP identification number, joint spacing (m), dowel diameter (mm), 
construction year, and mean yearly ESAL (thousands) are labeled in each plot, respectively. Each 
section was carefully examined. Two additional codes were assigned to each section to indicate the 
findings of the examination, i.e., whether the joint faulting is reasonable according to the distress 
history, or which year of data is questionable and could be deleted if necessary. For example, 
comparing the first three data points of pavement section 28/4024 with the remaining data, it was 
found that this section probably had some maintenance or rehabilitation activities although not 
recorded in the database. Data correction and preparation were made in a way that could be easily 
traced back. By doing so, different subsets of the final database providing more reliable data might be 
analyzed for different purposes. 
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FIGURE 1 Faulting history of some dowelled jointed pavements. 
 
PRELIMINARY ANALYSIS OF THE JOINT FAULTING DATABASE 

Univariate Data Analysis 

Univariate data analysis consists of statistical methods for describing the distribution and spread 
of each individual variable. Some basic descriptive statistics of dowelled faulting regarding the data 
range, its variation, and the number of observations for each individual variable are given in Table 1. 
Univariate data analysis procedure is often used to investigate the possibility of data errors and 
potential distribution problem for each variable considered. A few extreme (or unusual) data points 
may be identified or deleted from the analysis. In which, age stands for pavement age (years); kesalpyr 
is yearly ESALs (thousands); jtspace is joint spacing (m); bstress is the maximum bearing stress 
(MPa); hpcc is slab thickness (cm); fi is yearly freezing index (oC-days); precip is mean annual 
precipitation (mm); kstatic is the modulus of subgrade reaction (MPa/m); days32 is the number of 
days temperature above 32 oC; trange is the difference of maximum and minimum mean annual 
temperature (oC); ft is yearly freeze-thaw cycle; and act.fault is the mean joint faulting (mm). 

A graph is far more perceptible than thousands of numbers. A single plot which well describes the 
spread of the data may be created by combining these univariate statistics with a histogram. A 
simplified distribution plot which graphically displays the variability of data including median, lower 
and upper quantiles, 95 percent confidence intervals, and extreme points (if any) may be made in a 
boxplot. A boxplot displays not only the location and spread of the data but also skewness as well. A 
histogram only displays a rough and crude shape of the distribution of data. The distribution of joint 
faulting (act.fault) of dowelled pavements is shown in Figure 2. The solid horizontal line in the box 
plot indicates the median whereas the upper and lower ends of the box show the upper and lower 
quantiles, respectively. These plots reveal a relatively skewed distribution for actual joint faulting. 
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FIGURE 2  Exploratory data analysis: dowelled joint faulting. 
 

TABLE 1  Univariate Statistics and Multiple Correlations of Dowelled Jointed Pavements 
(a) Univariate Statistics: 
            N    MEAN STD DEV       SUM    MIN     MAX  
      age 305   17.51    6.25   5341.10   2.34   33.70 
 kesalpyr 305  387.28  421.72 118121.35  43.67 2501.62 
  jtspace 305   10.24    5.24   3122.98   3.96   30.48 
  bstress 305   21.31   36.35   6499.35   7.34  224.55 
     hpcc 305   24.65    2.68   7517.64  16.26   33.53 
       fi 305  212.96  302.88  64954.27   0.00 1270.79 
   precip 305 1144.74  290.76 349144.39 231.25 1650.60 
  kstatic 305   65.31   30.61  19919.49  24.05  156.11 
   days32 305   45.43   34.40  13856.62   1.00  174.35 
   trange 305   12.03    1.38   3670.31   9.88   17.40 
       ft 305   62.46   32.24  19050.90   1.61  143.87 
act.fault 305    1.04    1.45    316.50   0.00   11.10 
 
(b) Correlation Matrix:  
            age kesalpyr jtspace bstress  hpcc    fi precip kstatic days32 trange    ft act.fault  
      age  1.00    -0.03    0.37   -0.18  0.02  0.00   0.12   -0.06  -0.03  -0.11 -0.03      0.44 
 kesalpyr -0.03     1.00    0.03    0.06  0.13 -0.07  -0.28    0.01   0.20   0.40  0.04      0.13 
  jtspace  0.37     0.03    1.00   -0.06  0.09 -0.13   0.29   -0.01   0.07  -0.20 -0.12      0.27 
  bstress -0.18     0.06   -0.06    1.00 -0.12  0.00  -0.19   -0.18   0.08   0.16  0.16     -0.03 
     hpcc  0.02     0.13    0.09   -0.12  1.00 -0.26   0.26    0.23   0.23  -0.17 -0.26     -0.01 
       fi  0.00    -0.07   -0.13    0.00 -0.26  1.00  -0.50   -0.13  -0.63  -0.21  0.59     -0.03 
   precip  0.12    -0.28    0.29   -0.19  0.26 -0.50   1.00   -0.05   0.21  -0.39 -0.58      0.14 
  kstatic -0.06     0.01   -0.01   -0.18  0.23 -0.13  -0.05    1.00  -0.01  -0.02 -0.03     -0.15 
   days32 -0.03     0.20    0.07    0.08  0.23 -0.63   0.21   -0.01   1.00   0.41 -0.79      0.01 
   trange -0.11     0.40   -0.20    0.16 -0.17 -0.21  -0.39   -0.02   0.41   1.00  0.11      0.11 
       ft -0.03     0.04   -0.12    0.16 -0.26  0.59  -0.58   -0.03  -0.79   0.11  1.00      0.01 
act.fault  0.44     0.13    0.27   -0.03 -0.01 -0.03   0.14   -0.15   0.01   0.11  0.01      1.00 
 
 (c)Trimmed Correlation Matrix (Deleted 3 Percent of the Data): 
            age kesalpyr jtspace bstress  hpcc    fi precip kstatic days32 trange    ft act.fault  
      age  1.00    -0.08    0.40   -0.01  0.03  0.03   0.07   -0.08  -0.02  -0.08 -0.03      0.43 
 kesalpyr -0.08     1.00    0.13    0.10  0.23  0.11  -0.16    0.05  -0.03   0.41  0.21      0.28 
  jtspace  0.40     0.13    1.00   -0.09  0.16 -0.10   0.25   -0.03   0.19  -0.09 -0.14      0.16 
  bstress -0.01     0.10   -0.09    1.00 -0.34  0.05  -0.08   -0.05   0.13   0.34 -0.01      0.47 
     hpcc  0.03     0.23    0.16   -0.34  1.00 -0.18   0.33    0.19   0.27  -0.14 -0.33     -0.09 
       fi  0.03     0.11   -0.10    0.05 -0.18  1.00  -0.65   -0.02  -0.65  -0.12  0.65      0.19 
   precip  0.07    -0.16    0.25   -0.08  0.33 -0.65   1.00   -0.04   0.53  -0.19 -0.75     -0.08 
  kstatic -0.08     0.05   -0.03   -0.05  0.19 -0.02  -0.04    1.00   0.04   0.02 -0.03     -0.04 
   days32 -0.02    -0.03    0.19    0.13  0.27 -0.65   0.53    0.04   1.00   0.32 -0.84     -0.05 
   trange -0.08     0.41   -0.09    0.34 -0.14 -0.12  -0.19    0.02   0.32   1.00  0.10      0.24 
       ft -0.03     0.21   -0.14   -0.01 -0.33  0.65  -0.75   -0.03  -0.84   0.10  1.00      0.11 
act.fault  0.43     0.28    0.16    0.47 -0.09  0.19  -0.08   -0.04  -0.05   0.24  0.11      1.00 

 

Bivariate and Multivariate Analysis 

A correlation matrix of these variables is also given in Table 1. In addition, trimmed correlation 
matrices show the variable correlations after a certain portion of influential data points or possible 
outliers are eliminated (say 3 percent in this example) such that more reliable indices of the 
correlations are obtained. Note the difference between the resulting traditional correlation matrix and 
trimmed correlation matrix. A scatter plot matrix can graphically represent their relationships and 
scatters. Applying a data smoothing technique (lowess) on the same scatter plot matrix, the pairwise 
relationships as shown in Figure 3 become clearer and possible data errors may also be identified. 
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FIGURE 3  Scatter plot smoother and matrix for dowelled jointed pavements. 
 
INVESTIGATION OF THE GOODNESS OF FIT OF THE EXISTING MODELS 

To investigate the goodness of predictions, the aforementioned predictive models given in 
equations (1) to (4) were used to predict the occurrence of joint faulting and the results were plotted 
against the actual observed data. Figure 4(a)-(b) shows the goodness of prediction using P-020 models 
for dowelled and nondowelled jointed pavements, respectively. Similarly, Figure 5(a)-(b) depicts the 
results of this comparison using 1998 AASHTO models for dowelled and nondowelled jointed 
pavements. Visual graphical techniques such as condition plots were used to assist in the identification 
of the factors affecting the goodness of predictions. For example, the observations with relatively high 
bearing stress and faulting predictions were eliminated from the analysis due to their dowel bar 
diameters are smaller than 25.4 mm. 
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FIGURE 4 Goodness of prediction using P-020 (a) dowelled; and (b) nondowelled models.  
 

The prediction accuracy of the proposed models implemented in the recommended MEPDG 
(ARA Inc. 2004) was further investigated. To avoid undesirable misunderstanding of the new guide’s 
prediction algorithm due to the complexity involved, it was decided to directly use the MEPDG 
software for the prediction of transverse joint faulting. The beta version of the software could be 
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downloaded from http://www.trb.org/mepdg/ software.htm. A total of 23 dowelled and nondowelled 
JPCP pavement sections containing 98 data points were randomly selected for this analysis. The 
goodness of prediction using the NCHRP Project P-020 models, the 1998 AASHTO models, as well as 
the recommended MEPDG models is shown in Figure 6(a)-(c). Unfortunately, the prediction accuracy 
of the existing prediction models was found to be inadequate. 
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FIGURE 5 Goodness of prediction using 1998 AASHTO (a) dowelled; (b) nondowelled models.  
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FIGURE 6 Goodness of prediction using (a) P-020; (b) 1998 AASHTO; and (c) DG2002 models.  
 
DEVELOPMENT OF IMPROVED JOINT FAULTING MODELS 

The occurrence of joint faulting in field depends on various factors namely traffic, environment, 
structure, construction, maintenance and rehabilitation. Even though the use of an incremental 
approach and more complicated Axle Load Spectra (ALS) concept seems to be a very logical approach, 
the integration of which with monthly or seasonal environmental factors such as humidity and 
temperature differentials often resulted in more variations in the predictions of joint faulting due to 
many uncertainties involved.  To develop a more reliable predictive model for practical engineering 
problems, Lee and Darter (1995) proposed a predictive modeling approach to incorporate robust (least 
median squared) regression, alternating conditional expectations, and additivity and variance 
stabilization algorithms into the modeling process. The robust regression was proposed due to its 
favorable feature of analyzing highly contaminated data by detecting outliers from both dependent 
variable and independent variables. Through the iterative use of the combination of these outlier 
detection and nonparametric transformation techniques, it was believed that some potential outliers 
and proper functional forms might be identified. Subsequently, traditional regression techniques can be 
more easily utilized for model development. Nevertheless, many preliminary trials using these 
regression techniques have shown extreme difficulty to achieve a satisfactory predictive model. 

Exploratory data analysis of the response variable as shown in Figure 2 has indicated that the 
normality assumption with random errors and constant variance using conventional regression 
techniques might not be appropriate for prediction modeling. The distribution of joint faulting was 
tested for departures from normality using Shapiro and Wilk’s W-statistic (Insightful Corp. 2003). 
Various transformations including logarithm of the joint faulting were tested. The W-statistic indicated 



Ker, Lee, and Lin 9

that joint faulting is not lognormal distributed either. Thus, without assuming the error distribution of 
the response variable, generalized linear model (GLM) along with quasi-likelihood estimation method 
and Poisson distribution were adopted in the subsequent analysis. Many factors including age, 
kesalpyr, cesal, jtspace, bstress, hpcc, fi, precip, kstatic, days32, trange, ft, dowel, basetype, edgesup. 
drain, and stype were considered in the beginning trial analysis. In which, basetype represents base 
types (0 for granular base, 1 for treated base); edgesup is 0 for AC shoulder and 1 for concrete 
shoulder; drain is 1 if longitudinal drain and 0 if others; and stype is 1 for A1-A3 coarse-grained soil, 0 
for A4-A7 fine-grained soil. By keeping only those parameters with significant effects and reasonable 
physical interpretations in the model, various tentative prediction models were developed. 

Since the primary assumption of the above preliminary GLM models is that a linear function of 
the parameters was used in the model. Generalized additive model (GAM) extends GLM by fitting 
nonparametric functions using data smoothing techniques to estimate the relationship between the 
response and the predictors (Venables and Ripley 2002). To further enhance the model fits, GAM 
techniques were adopted in the subsequent analysis. Box-Cox power transformation technique was 
routinely utilized to estimate a proper, monotonic transformation for each variable based on the 
resulting preliminary GAM model. The joint faulting data was refitted with these transformed 
predictors using GLM techniques. Visual graphical techniques as well as the systematic statistical and 
engineering approach proposed by Lee and Darter (1995) were frequently adopted during the 
modeling process. After considerable amount of trails, the following preliminary models were 
developed for faulting predictions of dowelled and nondowelled pavements, respectively. As shown in 
Figure 7, a plot of the observed versus the fitted values is provided to illustrate the goodness of the fit. 
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FIGURE 7 Goodness of fit of the proposed (a) dowelled; and (b) nondowelled models. 
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DISCUSSIONS AND CONCLUSIONS 

Even though the use of an incremental approach and more complicated Axle Load Spectra (ALS) 
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concept as recommended by the MEPDG seems to be a very logical approach, the integration of which 
with monthly or seasonal environmental factors such as humidity and temperature differentials often 
resulted in more variations in the predictions of joint faulting due to many uncertainties involved. The 
prediction accuracy of the existing faulting models for jointed concrete pavements using the Long-
Term Pavement Performance (LTPP) database was found to be inadequate and greatly in need for 
improvements. A relatively skewed distribution for actual joint faulting was identified, which also 
indicated that normality assumption using conventional regression techniques might not be appropriate 
for this study. Thus, generalized linear model (GLM) and generalized additive model (GAM) were 
adopted for the modeling process. After many trails in eliminating insignificant and inappropriate 
parameters, the resulting mechanistic-empirical model included several variables such as pavement 
age, yearly ESALs, bearing stress, annual precipitation, base type, subgrade type, annual temperature 
range, joint spacing, modulus of subgrade reaction, and freeze-thaw cycle for the prediction of joint 
faulting. The goodness of the model fit was further examined. The plot of the response versus fitted 
values indicated that the proposed dowelled faulting model has substantial improvements over the 
existing models. However, the goodness of prediction of the nondowelled faulting model still contains 
large variability. Sensitivity analysis of the explanatory variables indicated their general trends seem to 
be fairly reasonable. The tentatively proposed predictive models appeared to reasonably agree with the 
pavement performance data although their further enhancements are possible and recommended. 
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