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ABSTRACT

This study strives to develop improved roughness prediction models for rigid pavements
using the Long-Term Pavement Performance (LTPP) database. Without assuming the crror
distribution of the response variable, generalized linear model (GLM) and general additive
model (GAM) were adopted in this study. Box-Cox power transformation technique, visual
graphical techniques, and a systematic statistical and engineering approach were adopted
during the modeling process. By keeping only those parameters with significant effects and
reasonable physical interpretations in the model, various tentative performance prediction
models were developed. The goodness of the fit was further examined through significant
testing and sensitivity analyses of pertinent explanatory parameters. The tentatively proposed
predictive models appeared to reasonably agree with the pavement performance data.
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INTRODUCTION

Roughness has been recognized as one of major performance measures primarily causcd by
accumulated traffic loads and environmental effects. Fxtensive research has been conducted
to predict the amount of this distress type in terms of International Roughness Index (IRD) b
using various cmpirical and mechanistic-empirical approaches. Conventional predictive
models usually correlate IR to accumulated traffic, joint types. environmental effects, and
several other design purmnclcrs:’. As pavement design evolves from traditional empirically
based methods toward mechanistic-empirical, the equivalent single axle load (ESAL) concept
used for traffic loads estimation is no longer adopted in the recommended Mechanistic-
Empirical Pavement Design Guide (MEP[)G)’”. The success of the new guide considerably
depends upon the accuracy of pavement performance predictions. Thus, this study will first
investigate its goodness of fit and strive to develop improved roughness prediction models for
rigid pavements using the Long-Term Pavement Performance (L.TPP) databasc®.

REVIEW OF EXISTING MECHANISTIC-EMPIRICAL PREDICTION MODELS

The NCHRP Project 1-19 was conducted with the primary objective of developing a system
for statewide and nationwide evaluation of concrete pavement pcrlbrmanceﬁ). A total of 410
JPCP and JRCP pavement sections representing 1297 miles of concrete pavement were
collected from six states distributed in various climatic regions. Eight additional JRCP
pavement sections from Nebraska were also included in this databasc. Several combinations
of multiple regression, stepwise regression, and nonlinear regression techniques were used to
develop various distress and serviceability prediction models using SPSS statistical package.

Since ficld-collected pavement database may not contain a wide range of design parameters
which may limit the inference space and the results of data inlcrpremti(m(", the LTPP program
has been collecting a national pavement database in a factorial format with wider ranges of
pavement designs, materials, and climatic zones starting from 1987. More than 2,400 asphalt
and Portland cement concrete pavement test sections across the North America have been
monitored. In the NCHRP project P-393, an carly sensitivity analysis study of the LTPP
database was conducted and models as shown in Table T were developed for IR1 prcdiclion:).

Table 1 IRI Prediction Models from SHRP P-393 Project

Pavement Types IRI Prediction Models
‘ IRI = 105.9236 + 159.1279* AGE | KSTATIC + 2.1669* JTSPACE
pcr 7 1274 % THICK 4 13.4955* EDGESUP
(Dowelled) R i
Statistics - N =21,R” = 0.548,SEE =19.06
TR] = 38.8523 + 12.8886 * CESAL +0.2217 * FT +1.4979* PRECIP
JPCP (Non- c C 12 A00 D ANE
' 210.9625* BASE - 13.6880* SUBGRADE
Dowelled) N
Sratistics : N =28, R* = 0.644, SEE =31.29
IR] 1413723 1 0.8488* AGE +0.3469* PRECIP + 1387.9594 | KSTATIC
JRCP 421 2432*% THICK + 15.0920* EDGESUP
Statistics : N =32,R* = 0.782,SEE =9.86
IR] = 2620480 + 1.4706 * CESAL - 2.9432* THICK - 232.2973* PSTEEL
CRCP 229.7949 * WIDENED - 16.8235* SUBGRADE
Statistics : N =42.R” = 0.546,SEE =17.1

Note that US customary unit system was used for these models, in which IRI is in in/mile;
CESAL is the accumulated 18-kip ESALSs (millions): FT is the average annual freeze-thaw
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cycles; PRECIP is the average annual precipitations (in.): BASE represents base types (0 for
untreated base, 1 for treated base); AGE is the pavement age (years); SUBGRADE is the
subgrade type based on AASHTO soil classification (0 for fine-grained soil, 1 for coarse-
grained soil). AGE is pavement age (ycars); KSTATIC is the modulus of subgrade reaction
(pst/in.): JTSPACE is the average transverse joint spacing (t); THICK is slab thickness (in.);
EDGESUP represents edge support (0 for AC shoulders, | for concrete shoulders): PSTEEL is
the longitudinal reinforcement (percent): WIDENED represents lane width type (0 for lane
width = 12 fi. 1 for lane width greater than 12 ft). Also note that N is the number of observa-
tions; R™ is the coefficient of determination. and SEL is the standard error of estimates.

The NCHRP Project 20-50(8/13) was conducted to study various factors affecting pavement
smoothness using the LTPP General Pavement Studies (GPS) and Specific Pavement Studies
(SPS) data”. Based on the limited available data, linear mixed cffects (LME) models® were
developed and are summarized in Table 2, in which, IR is in m/km; /R/, and IR, represent
the IRT at time t and time=0; Time is time (years); £, is PCC tensile strength (MPa); IRI,, , is
the first available IRI value; [RI,,, is IRI at time=ATime after the first available IRI; ATime
is the change in time from first profile data (years); KESAL is cumulative traffic in ESALs
(thousands); THICK is PCC thickness (mm): MC is the moisture content of subgrade
(pereent); TEMP is mean annual ambient temperature (°C); £, is the elastic modulus of PCC
(MPa); Wet.Days is the number of days per year with precipitation exceeding 0.25 mm;
5G200 1s the percentage of subgrade passing No. 200 sicve; Days32 is the number of days per
year with mean temperature greater than 32 °C: and PSTEEL is the longitudinal steel
reinforcement (percent). In addition, very low R values and very high residual errors were
resulted when using traditional regression analysis in that study.

Table 2 IRI Prediction Models from NCHRP Project 20-50(8/13)

Pavement Types IRI Prediction Models
IR, = 0.12284 +0.94229(/R1, )+ 0.05009(Time) — 0.00733(Time x 1))
Section effects standard deviation=0.26, SEE=0.11, No. Section=53
IRI,,, =-0.33172 + 1.15383(IR/,, )+ 0.00436 (KESAL /THICK )

+0.00418 (A Time x MC .. )— 0.00178 (ATime x TEMP')
Section effects standard deviation=0.26, SEE=0.18, No. Section=63
Log (IR1,) = ~0.1875633 +0.3967905 (IRI,, )+ 0.000008 1 (KESAL )
JRCP +0.0003266 (Time x MC )+ 0.0000002 (Time x E.)
Section effects standard deviation=0.15, SEE=0.05. No. Section=52
IRI, = ~0.4963 +0.0064(Her.Davs)+ 0.000 (£, / 1))

+0.0054(SG200)+0.0124(Time)

Section effects standard deviation=0.44, SEE=0.08, No. Section=39
CRCP (Wet- | IR, =2.1952+0.0076(Days32) - 2.015(PSTEEL )+ 0.0042(Time )
Non-Freeze) Section effects standard deviation=0.35, SEE=0.08, No. Section=34

JPCP(Dowelled)

JPCP (Non-
Dowelled)

CRCP (Wet-
Freeze)

Since roughness is the result of initial as-constructed pavement profile combined with any
profile change over time and traffic, certain key distress types which greatly affect IRI
measures were chosen as the predictors. In the recommended MEPDGY, the IRI models as
shown in Table 3 were calibrated using LTPP and other field data under a varicty of climatic
and ficld conditions, where, /R/ is the predicted IRI (in/mi); /Rl is initial smoothness
measured as IRI (in/mi); CRK is percent slabs with transverse cracks (all severities); SPALL

301



Roughness Prediction Models for Rigid Pavements

is the percentage of joints with spalling (medium and high severities): TFAULT s total joint
faulting cumulated per mile (in.): AGE is pavement age (ycars), FI is freezing index (°1-
days); P20 is percent subgrade material passing No. 200 sieve; and PO is the number of
punchouts per mile at all severities. The site factor SEF = AGE (1+0.556*F1) (14 P200)*10°.

No prediction model was proposed for JRCP pavements.

Table 3 IRI Prediction Models from the Recommended MEPDG

Pavement Types IRI Prediction Models
IRI = IRI, + C1xCRK +C2xSPALL + C3xTFA ULT + C4xSF
pCp C1=0.8203,C2=0.4417,03=1.4929,C4=25.24

Statistics: R*=0.60, SEE=27.3, N=183 (Before Calibration)

IRI = IRI, + C1x PO + C2xSF
CRCP Cl1=3.15, C2=28.35
Statistics: R°=0.60, SEE=14.6, N=94 (Before Calibration)

It is worth mentioning that the prediction of key distress quantities is determined in an
incremental manner based on more complicated Axle Load Spectra (ALS) concept 19 For
example, a faulting increment is determined cach month and its magnitude is affected by the
current faulting level. The faulting at cach month is determined as a sum of faulting
increments from all previous months. Various artificial neural networks models were
developed based on the ISLAB2000 finite element model to compute critical stresses and
deflections. Monthly faulting increment is computed for different axle loads, load positions,
and cquivalent temperature differences over the analysis period. Traflic data is further
processed to determine equivalent number of single, tandem, and tridem axles. Hourly
pavement temperature profiles gencrated  from the Enhanced Integrated Climate Model
(EICM) is converted to monthly equivalent linear temperature differentials. Monthly relative
humidity data is used to account for the effects of seasonal changes in moisture conditions on
differential shrinkage and is also converted to eftective temperature differentials. Therefore,
the regression statistics of IR1 models after calibration are unknown and questionable.

DATABASE PREPARATION

Initially, the DataPave 3.0 program was used to prepare a database for the study. However, in
order to obtain additional variables and the latest updates of the data, the LTPP DataPave
Online Release 18.0 became the main source of the study. Of which, only jointed concrete
pavements (GPS3 and GPS4) and continuously reinforced concrete pavements (GPSS) were
used in the study. Detailed traffic counts and ESALs were obtained from the Traftic module.
The cumulated ESAL during the performance analysis period was calculated by multiplying
pavement age with mean yearly ESAL (or kesalpyr) which was estimated from the database.
Fnvironmental data were retrieved from the IMS Climate module and the associated Virtual
Weather Station (VWS) link. The modulus of each pavement layer backcalculated using the
ERESBACK 2.2 program was retrieved from the IMS Monitoring module. The laboratory
tested layer moduli were compared with the backcalculated moduli so as to have a better
understanding of their associated variability in this study. The variability of the relationship
between the laboratory tested (or static) and backcalculated (or dynamic) moduli could not be
ignored'm. For this study, the recommendation of dividing the back-calculated modulus of
subgrade reaction (or k-value) by 2 as the static k-value was used.

The IRI data was obtained from MON PROFILE MASTER table in the IMS Monitoring
module. Maintenance and rehabilitation activities could effectively reduce the  distress
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quantitics. Thus, the records in both Maintenance and Rehabilitation modules were used to
assure that this study only chose the performance data of those sections without or before
major improvements. A Microsoft Excel summary table containing the pavement inventory,
material and testing, traffic, climatic, and distress data was created using the relational
database features of the Access program. The Excel table was then stored as S-Plus datasets
for subsequent analysis'”. The summary, table, cor, plot, pairs, and coplot functions were
heavily utilized to summarize the information of interest for this study.

INVESTIGATION OF THE GOODNESS OF FIT OF THE EXISTING MODELS

The aforementioned predictive models given in Table 1 and Table 2 were used for IRI
predictions and the results were plotted against the ficld observed data. Figure | depicts the
goodness of prediction using SHRP P-393 and NCHRP 20-50(8/13) models, respectively.
Visual graphical techniques such as condition plots were used to assist in identifying the
factors affecting the goodness of predictions. Apparently, the results were not very favorable.
The prediction accuracy of the models from the recommended MEPDG was further
investigated. To avoid undesirable misunderstanding of the new guide’s prediction algorithm
due to the complexity involved, it was decided to use the MEPDG software for IRI
predictions directly. For some unknown reasons, the software could not be executed for
several randomly sclected LTPP sections. Nevertheless, a total of 20 JPCP pavement sections
containing 357 data points were successfully analyzed. The goodness of prediction using
MEPDG models for IRI is shown in Figure 2. Even though the IRI prediction accuracy
appeared to be reasonable, the results of a similar study conducted by Lin'” for the prediction
of joint faulting and transverse cracking was found to be inadequate. Since the adequacy of
IRI predictions is heavily relied on the accuracy of distress predictions, knowledge of initial
IR, and site factor adjustment, further study on clarifying this discrepancy is warranted.
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Figure 1 Goodness of prediction using (a) SHRP P-393: and (b) NCHRP 20-50(8/13) models

DEVELOPMENT OF TENTATIVE ROUGHNESS PREDICTION MODELS
Exploratory data analysis of the response variable has indicated that the normality assumption
with random crrors and constant variance using conventional regression techniques might not
be appropriate for prediction modeling. Without assuming the error distribution, generalized
lincar model (GLM) along with quasi-likelihood estimation method was adopted in the
subsequent analysis. Many factors included in the aforementioned existing models were
considered in the beginning trial analysis. By keeping only those parameters with significant
effects in the model, various tentative prediction models were developed.
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Predicted IRl (m/km)

Actual IRl (mkm)

Figure 2 Goodness of fit using MEPDG IR1 prediction models

Since the primary assumption of the above preliminary GLM models is that a linear function
of the parameters was used in the model. Generalized additive model (GAM) extends GLM
by fitting nonparametric functions using data smoothing techniques to estimate the
relationship between the response and the prcdictors”" 'Y To further enhance the model fits,
GAM techniques were adopted in the subsequent analysis. Box-Cox power transformation
technique was routinely utilized to estimate a proper, monotonic transformation for each
variable based on the resulting preliminary GAM model. Visual graphical techniques were
frequently adopted during the modeling process. After considerable amount of trails, the
following preliminary models as shown in Table 4 were developed for IRI predictions.

Table 4 Tentative IRI Prediction Models

Pavement Types IRI Prediction Models

IPC 1 1
pcP IRI =0.471240.01733% qge+267.7 * 4 5.736% ———— +0.1668* log,, (cosal)
([)O\\'C“Cd) kstat Jispace”

+0.0004158% precip+0.1004% bt = 0.1809* subgrade+ 0.2473*widened
Statistics: R™=0.35, SEE=0.41, N=380

IPCP (Non= |y 03701 40,0758 » Jage + 5.5953 % — 83323
Dowelled) kstat Jispace

-304.1814+* ; 'll\ —+0.0529% FT° +0.2985*log,, precip
HicK~
Statistics: R°=0.231, SEE=0.681, N=605

JRC 1 5 .
RCP IRl =—0.554+0.1978* Jage + 1683167 * p —+0.0021* jrspace” +0.0015* thick
Start
+0.31 ()()*%%p —~0.528*log,,(1+ psteel) +0.431* edgesup+0.0837* subgrade
Statistics: R™=0.4, SEE=0.34, N=416
CRCP

IRI =1.9568+0.1158 Jage —112.3738* ; _‘A‘ -0.2423log,, (cesal)+0.000 1+ T
ThICK™

+0.4333%log,, precip—=2.3863% psteel +0.1046* subgrade—0.183* widened
Statistics: R*=0.14, SEE=0.44, N=53

In which, age stands for pavement age (years); kstat is the modulus of subgrade reaction
(MPa/m); jtspace is joint spacing (m); cesal is cumulated traffic in ESALSs (millions): precip is
mean annual precipitation (mm): bt is base type (0 for untreated base, 1 for treated base):
subgrade is subgrade type (0 for finc-grained soils, 1 for coarse-grained soils); widened is
lane width type (0 for width=12 fi. T for width>12 1): thick is slab thickness (cm): FT is
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yearly freeze-thaw cycles: psteel is the percentage of longitudinal steel remforcement:
edgesup is edge support (0 for AC shoulder, 1 for concrete shoulder): and IR 1s the mean
roughness (mm). Sensitivity analyses were conducted to assure the predictors of having
reasonable physical interpretations. Nevertheless, the effect of slab thickness does not agree
with gencral perceptions that the increase in slab thickness will result in the decrease in
roughness. One possible explanation can be that initial roughness may be higher for thicker
pavements due to construction problems. To illustrate their goodness of fit, the fitted values
were plotted against the observed IRl measures as shown in Figure 3.
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Figure 3 Goodness of fit of the proposed models for (a) JPCP (dowelled): (b) JPCP (non-
dowelled): (¢) JRCP; and (d) CRCP predictions

CONCLUSIONS

The LTPP DataPave Standard Release 18.0 data was used in this study. The goodness of
predictions of the existing roughness models trom SHRP P-393, NCHRP 20-50(8/13) and the
recommended MEPDG were further investigated. The results of the first two comparisons
were not very favorable. In addition, for some unknown reasons, the MEPDG software could
not be executed for several randomly selected LTPP sections. Even though the IRI prediction
accuracy of the MEPDG appeared to be reasonable, the results of a similar study for the
prediction of joint faulting and transverse cracking was found to be inadequate. Since the
adequacy of IRI predictions is heavily relied on the accuracy of distress predictions,
knowledge of initial IRI, and site factor adjustment, further study on clarifying this
discrepancy is warranted.

Generalized lincar model (GLM) and generalized additive model (GAM) were adopted for the
modeling process. After many trails in eliminating insignificant and inappropriate parameters,
the resulting models included several variables such as pavement age, subgrade modulus,
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joint spacing, cumulated ESALs, annual precipitation, base type, subgrade type, lane width
type. slab thickness, yearly freeze-thaw cycles, percent of steel reinforcement, and edge
support for roughness predictions. The goodness of the model fit was further examined which
also indicated that large variability was still obscrvable in the tentatively proposed models,
especially for the JPCP (non-dowelled) and CRCP prediction models. Sensitivity analysis of
the explanatory variables has indicated that their general trends seem to be fairly reasonable.
Nevertheless, the effect of slab thickness does not agree with general perceptions that the
increase in slab thickness will result in the decrease in roughness. One possible explanation
can be that initial roughness may be higher for thicker pavements due to construction
problems. The tentatively proposed models appeared to reasonably agree with the
performance data although their further enhancements are possible and recommended.
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