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Abstract: Multilevel data are very common in many fields. Because of its hierarchical data 
structure, multilevel data are often analyzed using Linear Mixed-Effects (LME) 
models. The exploratory analysis, statistical modeling, and the examination of 
model-fit of LME models are more complicated than those of standard multiple 
regressions. A systematic modeling approach using visual-graphical techniques 
and LME models was proposed and demonstrated using the original AASHO 
road test flexible pavement data. The proposed approach including exploring the 
growth patterns at both group and individual levels, identifying the important 
predictors and unusual subjects, choosing suitable statistical models, selecting a 
preliminary mean structure, selecting a random structure, selecting a residual 
covariance structure, model reduction, and the examination of the model fit was 
further discussed.  

 
Keywords: AASHO road test, flexible pavement, linear mixed-effects models, multilevel 
data.  
 

1. INTRODUCTION 

Longitudinal data are used in the research on growth, development, and 
change. Such data consist of measurements on the same subjects repeatedly 
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over time. To describe the pattern of individual growth, make predictions, 
and gain more insight into the underlying causal relationships related to 
developmental pattern requires studying the structure of measurements taken 
on different occasions [1]. Multivariate analysis of variance (MANOVA), 
repeated measures ANOVA, and standard multiple regression methods have 
been the most widely used tools for analyzing longitudinal data. Polynomial 
functions are usually employed to model individual growth patterns.  

Classical longitudinal data analysis relies on balanced designs where each 
individual is measured at the same time (i.e., no missing observations). 
MANOVA, which imposes no constraints on residual covariance matrix, is 
one common approach in analyzing longitudinal data. However, an 
unconstrained residual covariance structure is not efficient if the residual 
errors indeed possess a certain structure, especially when this structure is 
often of interest in longitudinal studies. Repeated measures ANOVA have 
the assumption of sphericity. It is too restrictive for longitudinal data 
because such data often exhibit larger correlations between nearby 
measurement than between measurements that are far apart. The variance 
and covariance of the within-subject errors also vary over time. The 
sphericity assumption is inappropriate in longitudinal studies if residual 
errors exhibit heterogeneity and dependence.   

In longitudinal studies, the focus is on determining whether subjects 
respond differently under different treatment conditions or at different time 
points. The errors in longitudinal data often exhibit heterogeneity and 
dependence, which call for structured covariance models. Longitudinal data 
typically possess a hierarchical structure that the repeated measurements are 
nested within an individual. While the repeated measures are the first level, 
the individual is the second-level unit and groups of individuals are higher 
level units [2]. Traditional regression analysis and repeated measures 
ANOVA fail to deal with these two major characteristics of longitudinal data. 

Linear Mixed-Effects (LME) models are an alternative for analyzing 
longitudinal data. These models can be applied to data where the number and 
the spacing of occasions vary across individuals and the number of occasions 
is large. LME models can also be used for continuous time. LME models are 
more flexible than MANOVA in that they do not require an equal number of 
occasions for all individuals or even the same occasions. Moreover, varied 
covariance structures can be imposed on the residuals based on the nature of 
the data. Thus, LME models are well suited for longitudinal data that have 
variable occasion time, unbalanced data structure, and constrained 
covariance model for residual errors. 

A systematic modeling approach using visual-graphical techniques and 
LME models was proposed and demonstrated using the original AASHO 
road test flexible pavement data [3]. The proposed approach including 
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characterizing the growth patterns at both group and individual levels, 
identifying the important predictors and unusual subjects, choosing suitable 
statistical models, selecting random-effects structures, suggesting possible 
residuals covariance models, and examining the model-fits will be further 
discussed [4-7]. 

2. METHODS 

Hierarchical linear models allow researchers to analyze hierarchically 
nested data with two or more levels. A two-level hierarchical linear model 
consists of two submodels: individual-level (level-1) and group-level (level-
2). The parameters in a group-level model specify the unknown distribution 
of individual-level parameters. The intercept and slopes at individual-level 
can be specified as random. Substituting the level-2 equations for the slopes 
into the level-1 model yields a linear mixed-effects (LME) model. LME 
models are mixed-effects models in which both fixed and random effects 
occur linearly in the model function [8]. 

In a typical hierarchical linear model, the individual is the level-1 unit in 
the hierarchy. An individual has a series of measurements at different time 
points in longitudinal studies [9]. When modeling longitudinal data, the 
repeated measurements are the level-1 units (i.e., a separate level below 
individuals). The individual is the second-level unit, and more levels can be 
added for possible group structures [2]. The basic model at the lowest level, 
also regarded as repeated-measures level, for the application of hierarchical 
linear model in longitudinal data can be formulated as: 

Level-1: tjtjjtj1j0jtj xc rY 2 +++= βββ  (1) 

Where Ytj is the measure for an individual j at time t, ctj is the time 
variable indicating the time of measurement for this individual, xtj is the 
time-varying covariate, and rtj is the residual error term. 

Level-2: 
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In this level-2 equation, W is the time-invariant covariate for this 
individual. After substituting level-2 equations into level-1, the combined or 
the linear mixed-effects model is: 
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]uuu[ ][Y 21112010 tjtj2jtj1j0jtjj1tjj1j101tjtj00tj rxcxWcWWxc +++++++++= γγγγγγ  (3)  

The level-1 model is a within-individuals model and the level-2 model is a 
between-individuals model [10]. Note that there is no time-invariant 
covariate in level-2 before introducing the variable W. The variance and 
covariance of the u’s are the variances and covariances of the random 
intercept and slopes. After introducing the variable W, the variance and the 
covariance of u’s are the variance and covariance of residual intercept and 
slopes after partitioning out the variable W. More time-invariant variables 
can be added sequentially into level-2 to get different models. The reduction 
in variance of u’s could provide an estimate of variance in intercepts and 
slopes accounted for by those W’s [11]. This linear mixed-effects model 
does not require that every individual must have the same number of 
observations because of possible withdrawal from study or data transmission 
errors. 

Let Ytj denotes the tth measurement on the jth individual, in which t = 1, 
2, … ni measurements for subject j, and j = 1, 2, … N individuals. The vector 
Yj is the collection of the observations for the jth individual. A general linear 
mixed-effects model for individual j in longitudinal analysis can be 
formulated as:  

jjjjj RUZβXY ++=  (4)  

Where Xj is an (nj×p) design matrix for the fixed effects; and β is a (p×1) 
vector of fixed-effect parameters. Zj is an (nj×r)design matrix for the random 
effects; and Uj is an (r×1) vector of random-effect parameters assumed to be 
independently distributed across individuals with a normal distribution, Uj 
~NID(0, T). The Uj vector captures the subject-specific mean effects as well 
as reflects the extra variability in the data. Rj  is an (nj×1) vector for the 
residuals. The within errors, Rj, are assumed normally distributed with mean 
zero and variance σ2Wj, where Wj (stands for “within”) is a covariance 
matrix with a scale factor σ2.  The matrix Wj can be parameterized by using 
a few parameters and assumed to have various forms, e.g., an identity matrix 
or the first-order of autoregression or moving-average process [12-13]. They 
are independent from individual to individual and are independent of random 
effects, Uj. 

Other choices for variance-covariance structures that involve correlated 
within-subject errors have been proposed. Using appropriate covariance 
structures can increase efficiency and produced valid standard errors. The 
choice among covariance depends upon data structures, subject-related 
theories and available computer packages. In some cases, heterogeneous 



#. Preliminary Analysis of Flexible Pavement Performance Data 
Using Linear Mixed Effects Models 

5

 
error variances can be employed in the model because the variances in this 
model are allowed to increase or decrease with time. The assumption of 
common variance shared by all individuals is removed [12, 14].  

LME models generally assume that level-1 residual errors are uncorrelated 
over time. This assumption is questionable for longitudinal data that have 
observations closely spaced in time. There typically exists dependence 
between adjacent observations. This is called serial correlation and it tends 
to diminish as the time between observations increases. Serial correlation is 
part of the error structure and if it is present, it must be part of the model for 
producing proper analysis [12]. If the dependent within-subject errors are 
permitted, the choice of the model to represent the dependence needs careful 
consideration. It would be preferable to incorporate as much individual-
specific structure as possible before introducing a serial correlation structure 
into within-subject errors [15]. 

3. DATA DESCRIPTION 

The AASHO road test was a large-scale highway research project conducted 
near Ottawa, Illinois from 1958 to 1960, and has had by far the largest impact 
on the history of pavement performance analysis. The test consisted of 6 loops, 
numbered 1 through 6. Each loop was a segment of a four-lane divided 
highway and centerlines divided the pavements into inner and outer lanes, 
called lane 1 and lane 2. Pavement designs varied from section to section. All 
sections had been subjected to almost the same number of axle load 
applications on any given date. Performance data was collected based on the 
trend of the pavement serviceability index at 2-week interval. The last day of 
each 2-week period was called an “index day.” Index days were numbered 
sequentially from 1 (November 3, 1958) to 55 (November 30, 1960) [3, 7, 16].  

Empirical relationships between pavement thickness, load magnitude, axle 
type, accumulated axle load applications, and performance trends for both 
flexible and rigid pavements were developed after the completion of the road 
test. Several combinations of certain rules, mathematical transformations, 
analyses of variance, graphs, and linear regression techniques were utilized 
in the modeling process to develop such empirical relationships. A load 
equivalence factor was then established to convert different configurations of 
load applications to standard 18-kip equivalent single-axle loads (ESAL). 
This ESAL concept has been adopted internationally since then. As 
pavement design evolves from traditional empirically based methods toward 
mechanistic-empirical, the ESAL concept used for traffic loads estimation is 
no longer adopted in the recommended Mechanistic-Empirical Pavement 
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Design Guide (MEPDG) [17], although many researchers have argued that it 
is urgently in need of reconsideration [3, 18-19]. 

During the road test, it was found that the damage rate was relatively low 
in winter but was relatively high in spring for flexible pavements. Therefore, 
load applications were adjusted by “seasonal weighting function” such that a 
better “weighted” flexible pavement equation was developed. Lee [18] has 
pointed out that the error variance increases when the predicted number of 
weighted load repetitions (W) increases. To serve the needs of predicting 
pavement serviceability index (PSI) after certain load applications on a given 
section, it is not uncommon that engineers would rearrange the original 
flexible pavement equation into the following form:  

[ ]

321

2.0)1log(*36.9)log(*
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10944.0

11.014.044.0
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 (5) 

In which the regression statistics are: R2=0.212, SEE=0.622, N=1083 [18]. 
Note that PSI ranges from 0 to 5 (0-1 for very poor; 1-2 for poor; 2-3 for fair; 
3-4 for good; and 4-5 for very good conditions).  D1 is the surface thickness 
(in.); D2 is the base thickness (in.); D3 is the subbase thickness (in.). 

4. EXPLORATORY ANALYSIS 

Exploratory analysis is a technique to visualize the patterns of data. It is 
detective work of exposing data patterns relative to research interests. 
Exploratory analysis of longitudinal data can serve to: (a) discover as much 
of the information regarding raw data as possible rather than simply 
summarize the data; (b) highlight mean and individual growth patterns 
which are of potential research interest; as well as (c) identify longitudinal 
patterns and unusual subjects. Hence plotting individual curves to carefully 
examine the data should be performed first before any formal curve fitting is 
carried out. For the nature of this flexible pavement data, the exploratory 
analysis includes exploring “growth” patterns and the patterns regarding 
experimental conditions. 

4.1 Exploring “growth” patterns 
The first step, which is perhaps the best way to get a sense of a new data, 

is to visualize or plot the data. Most longitudinal data analyses address 
individual growth patterns over time. Thus, the first useful exploratory 
analysis is to plot the response variable against time including individual and 
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overall mean profiles. Individual mean profiles, which summarize the 
aspects of response variable for each individual over time, can be used to 
examine the possibility of variations among individuals and to identify 
potential outliers. The overall mean profile summarizes some aspects of the 
response variable over time for all subjects and is helpful in identifying 
unusual time when significant differences arise.  

 

 
Figure #-1. Mean PSI for each subject (loop/lane) versus index day. 

Figure #-1 shows the lines connecting the dependent variable (mean PSI) 
over time for each subject (loop/lane). Most subjects have higher mean PSIs 
at the beginning of the observation period, and they tend to decrease over 
time. The spread among the subjects is substantially smaller at the beginning 
than that at the end. In addition, there exist noticeable variations among 
subjects. The overall mean growth curve over time indicates that the overall 
mean PSIs are larger at the beginning and decrease over time; and the rate of 
deterioration is higher at the beginning than that at the end.  

 

4.2 Exploring the patterns of experimental conditions 
In addition to time (in terms of index day), different major experimental 

conditions may be considered. This exploratory analysis is intended to 
discover the overall and individual patterns of each experimental condition 
and their interactions on mean PSIs. Subsequently, the patterns of mean PSIs 
for each subject and the patterns of overall mean PSIs on each experimental 
condition and their interactions over time are investigated [7]. Generally 
speaking, the mean PSIs for pavements with higher surface thickness are 
higher than those with thinner surface layer. 
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5. LINEAR-MIXED EFFECTS MODELING 

APPROACH 

The following proposed modeling approach is generally applicable to 
modeling multilevel longitudinal data with a large number of time points. 
Model building procedures including the selection of a preliminary mean 
structure, the selection of a random structure, the selection of a residual 
covariance structure, model reduction, and the examination of the model fit 
are subsequently illustrated. 

5.1 Selecting a preliminary mean structure 
Covariance structures are used to model variation that cannot be explained 

by fixed effects and depend highly on the mean structures. The first step to 
model building is to remove the systematic part and remove this so that the 
variation can be examined. The dataset includes the following explanatory 
variables: thick, basethk, subasthk, uwtappl, FT.  In which, thick is the 
surface thickness (in.); basethk is the base thickness (in.); subasthk is the 
subbase thickness (in.); uwtappl is the unweighted applications (millions), 
and FT is monthly the freeze-thaw cycles. 

A model containing all main effects, and all the two-way, three-way 
interaction terms was first investigated. This model (called model-1) has the 
form: 

ij

jijjijj

ijjijjijjjij

R

FTuwtappluwtappl

subasthkbasethkthickPSI

+
+

++++

+++=

uwtappl and           
 subasthk, basethk,  thick,of n termsinteractioway - three           

uwtappl and subasthk, basethk,  thick,of n termsinteractio           

way-two)()()(           

)()()(

6
2

54

3210

βββ

ββββ

  (6) 

5.2 Selecting a preliminary random structure 
The second step is to select a set of random effects in the covariance 

structure. An appropriately specified covariance structure is helpful in 
interpreting the random variation in the data, achieving the efficiency of 
estimation, as well as obtaining valid inferences of the parameters in the 
mean structure of the model. In longitudinal studies, the same subject is 
repeatedly measured over time. The data collected from longitudinal study is 
a collection of correlated data. The within-subject errors are often 
heteroscedastic (i.e., having unequal variance), correlated, or both.  
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5.2.1 Exploring preliminary random-effects structure  

A useful tool to explore the random-effects structure is to remove the 
mean structure from the data and use ordinary least square (OLS) residuals 
to check the need for a linear mixed-effects model and decide which time-
varying covariate should be included in the random structure. 

The boxplot of residuals by subject corresponding to the fit of a single 
linear regression by using the same form of the preliminary level-1 model 
was conducted. This is the case when grouping structure is ignored from the 
hierarchy of data. Since the residuals are not centered around zero, there are 
considerable differences in the magnitudes of residuals among subjects. This 
indicates the need for subject effects, which is precisely the motivation for 
using linear mixed-effects model. Separate linear regression models were 
employed to fit each subject to explore the potential linear relationship.  

To assist in selecting a set of random effects to be included in the 
covariance model, the plots of mean raw residuals against time and the 
variance of residuals against time are useful. If only random-intercepts 
models hold, the residual has the form, 

ijjij RUe += 0
, in which U0j  is the 

random effect for intercepts and Rij is the level-1 error. If this plot shows 
constant variability over time or the curves are flat, then only random 
intercept model is needed. If random-intercepts-and-slopes models hold, the 
residual has the form, ++= ijjjij xUUe 110

 
ijqijqj RxU ++... , where Uqj is the 

random effect for the q-th slope. In the case of random-intercepts-and-slopes 
model, the plot would show the variability varies over time or there are some 
unexplained systematic structures in the model. One or more random effects, 
additional to random intercept, have to be added. 

 
5.2.2 Selecting a variance-covariance structure for random effects 

Three possible variance-covariance structures including general positive 
definite (unstructured), diagonal, and block-diagonal based on different 
assumptions [8] were investigated. General positive-definite is a general 
covariance matrix parameterized directly in terms of variances and 
covariances. Diagonal covariance structure is used when random-effects are 
assumed independent. Block-diagonal matrix is employed when it is 
assumed that different sets of random effects have different variances. Table 
#-1 displays the model comparison of these three models. The unstructured 
model has the smallest absolute value of log-likelihood among them. The 
likelihood ratio test for unstructured model versus diagonal model is 160.23 
with p-value less than 0.0001. Thus, unstructured variance-covariance model 
will be used hereafter. 
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Table #-1. Model comparison using three variance-covariance structures 
Model df AIC BIC logLik Test L.Ratio p-value 

(1) Unstr 29 12910.29 13117.74 -6426.14    
(2) Diag 22 13056.52 13213.90 -6506.26 1 vs 2 160.234 < 0.0001 
(3) Bk-diag 21 13060.14 13210.37 -6509.07 2 vs 3 5.621 0.0177 

 
The random effects of the preliminary level-2 model include intercept, 

uwtappl, quadratic term of uwtappl, and FT. The variance-covariance 
structure is a general positive-definite matrix. Putting the preliminary level-1 
and level-2 models together, the preliminary linear-mixed-effects model is 
then: 
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 (7)  

5.3 Selecting a residual covariance structure 
The absolute value of log-likelihood for this heteroscedastic model is 

6273.29. The need of heteroscedastic model can be formally checked by 
using the likelihood ratio test [7]. The small p-value indicates that the 
heteroscedastic model explains the data significantly better than 
homoscedastic model. 

Correlation structures are used to model dependence among the within-
subject errors. Autoregressive model with order of 1, called AR(1), is the 
simplest and one of the most useful models [8]. The autocorrelation function 
(ACF), which begins autocorrelation at lag 1 and then declines geometrically, 
for AR(1) is particularly simple. Autocorrelation functions for autoregressive 
model of order greater than one are typically oscillating or sinusoidal 
functions and tend to damp out with increasing lag [20]. 

Thus, AR(1) may be adequate to model the dependency of the within-
subject errors. The absolute value of log-likelihood for this heteroscedastic 
AR(1) model is 6207.24. The estimated single correlation parameter φ is 
0.125. The heteroscedastic model (corresponding to φ = 0) is nested within 
the heteroscedastic AR(1) model. 

Likewise, the need of heteroscedastic AR(1) model can be checked using 
likelihood ratio test [7]. The small p-value indicates that the heteroscedastic 
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AR(1) model explains the data significantly better than heteroscedastic 
model, suggesting that within-group serial correlation is present in the data. 

 

5.4 Model reduction 
After specifying the within-subject error structure, the next step is to check 

whether the random-effects can be simplified. It is also desirable to reduce 
the number of parameters in fixed effects in order to achieve a parsimonious 
model that can well represent the data. A likelihood ratio test statistic, whose 
sampling distribution is a mixture of two chi-squared distributions, is used to 
test the need for random-effects. The p-value is determined by equal weight 
of the p-values of a mixture of two chi-squared distributions. To assess the 
significance of the terms in the fixed effects, conditional t-tests are used. 

 
5.4.1 Reduction of random effects  

The matrix of known covariates should not have polynomial effect if not 
all hierarchically inferior terms are included [21]. The same rule applies to 
interaction terms. Hence, significance tests for higher-order random effects 
should be performed first. The random effects included in the preliminary 
random-effects structure are: intercept, uwtappl, uwtappl2, and FT. The 
models and the associated maximum log-likelihood values are compared [7]. 
The small p-value indicates that the preliminary random-effects structure 
explains the data significantly better than the others. Thus, no reduction of 
random effects is needed. 

 
5.4.2 Reduction of fixed effects  

An adequate and appropriately specified random-effects structure implies 
efficient model-based inferences for the fixed effects. When considering the 
reduction of fixed effects, one model is nested within the other model and 
the random-effects structures are the same for the full and the reduced 
models. Likelihood ratio tests are appropriate for the model comparison. The 
parameter estimates, estimated standard errors, t-statistics and p-values for 
the fixed effects of the heteroscedastic AR(1) model are revisited. The 
heteroscedastic AR(1) model can be reduced to a more parsimonious model 
due to the existence of some insignificant parameter estimates. The reduction 
of fixed effects starts with removing the parameters with largest p-values, 
insignificant terms, and combining the parameters not changing significantly. 
These processes are repeated until no important terms have been left out of 
the model.  
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5.5 Proposed preliminary LME model 
The final proposed preliminary linear mixed-effects model is listed in 

Table #-2. The fixed-effects structures of the proposed model contain 
significant treatment effects for thick, basethk, subasthk, uwtappl, uwtappl^2, 
FT, and several other two-, three-, and four-way interaction terms. The 
positive parameter estimates for thick, basethk, and subasthk indicates that 
higher mean PSI values tend to occur on thicker pavements. The parameter 
estimate of uwtappl is negative indicating that lower PSI values for higher 
load applications.  

 
Table #-2. Proposed preliminary LME model 

        Random Effects 

 Intercept uwtappl uwtappl2 FT Residual
Standard Deviation 0.170 1.679 0.765 0.00722 0.448 
Fixed Effects 

Parameter Value Std.Error DF t-value p-value 

(Intercept) 2.4969  0.0703  9423 35.51  < 0.0001

thick 0.2629  0.0122  9423 21.48  < 0.0001

basethk 0.0590  0.0066  9423 8.91  < 0.0001

subasthk 0.0386  0.0041  9423 9.37  < 0.0001

uwtappl -3.6191  0.5254  9423 -6.89  < 0.0001

uwtappl^2 1.1524  0.2481  9423 4.65  < 0.0001

FT 0.0148  0.0023  9423 6.39  < 0.0001

thick*basethk -0.0062  0.0016  9423 -3.81  < 0.0001

thick*subasthk -0.0082  0.0010  9423 -8.07  < 0.0001

basethk*uwtappl 0.1275  0.0172  9423 7.40  < 0.0001

subasthk*uwtappl 0.1355  0.0181  9423 7.50  < 0.0001

thick*basethk*uwtappl -0.0155  0.0045  9423 -3.43  0.0006 

thick*subasthk*uwtappl -0.0077  0.0036  9423 -2.16  0.0307 

basethk*subasthk*uwtappl -0.0291  0.0029  9423 -9.87  < 0.0001

thick*basethk*subasthk*uwtappl 0.0073  0.0006  9423 11.53  < 0.0001

Note. (a) Model fit: AIC=12481.77, BIC=12710.69, logLik=-6208.89. (b) Correlation 
structure: AR(1); parameter estimate(s): Phi= 0.126. (c) Variance function structure: for 
different standard deviations per stratum (thick= 2, 1, 3, 4, 5, 6 in.), the parameter estimates 
are: 1, 1.479, 0.935, 1.199, 0.982, 0.959. 



#. Preliminary Analysis of Flexible Pavement Performance Data 
Using Linear Mixed Effects Models 

13

 
Furthermore, the preliminary LME model also indicates that: The standard 

error for the pavements with surface thickness of 1 in. or 4 in. is about 48% 
or 20% higher than those with surface thickness of 2 in., respectively. There 
exists dependency in within-subject errors. The estimated single correlation 
parameter for the AR(1) model is 0.126. 

5.6 Examination of the model fit 
A plot of the population predictions (fixed), within-group predictions 

(Subject), and observed values versus time for the proposed preliminary 
LME model by subjects. Population predictions are obtained by setting 
random-effects to zero whereas within-group predictions use estimated 
random effects [7]. The prediction line of the within-group predictions 
follows the observed values more closely indicating the proposed LME 
model provides better explanation to the data. 

6. CONCLUSIONS 

A systematic modeling approach using visual-graphical techniques and 
LME models which is generally applicable to modeling multilevel 
longitudinal data with a large number of time points was proposed in this 
paper. The original AASHO road test flexible pavement data was used to 
illustrate the proposed modeling approach.  

Exploratory analysis of the data indicated that most subjects (loop/lane) 
have higher mean PSIs at the beginning of the observation period, and they 
tend to decrease over time. The spread among the subjects is substantially 
smaller at the beginning than that at the end. In addition, there exist 
noticeable variations among subjects. 

A preliminary LME model for PSI prediction was developed. The positive 
parameter estimates for thick, basethk, and subasthk indicates that higher 
mean PSI values tend to occur on thicker pavements. The parameter estimate 
of uwtappl is negative indicating that lower PSI values for higher load 
applications. The prediction line of the within-group predictions (Subject) 
follows the observed values more closely than that of the population 
predictions (fixed) indicating the proposed LME model provides better 
explanation to the data. 
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