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ABSTRACT:  Since corner breaks are one of the major structural distresses in jointed concrete pavements, this
research study focuses on the determination of the critical bending stresses at the corner of the slab due to the individual
and combination effects of wheel loading and thermal curling.  A well-known slab-on-grade finite element program
(ILLI-SLAB), developed over the past 15 years at the University of Illinois, was used for the analysis.  Based on the
principles of dimensional analysis, the dominating mechanistic variables were carefully identified and verified.  The
resulting ILLI-SLAB corner stresses were compared to theoretical Westergaard solutions.  Adjustment factors (R)
were introduced to account for this theoretical discrepancy.  Prediction models were developed and could be used as
an alternative to the very time-consuming and complicated F.E. analysis to estimate stresses for design purposes with
efficiency and sufficient accuracy.  A practical design example showing the use of the models was also provided.

1  INTRODUCTION

Recently, Portland cement concrete (PCC) has gradually
recognized as an alternative pavement material in our
highway pavement community due to its high rigidity and
superior bearing capability as compared to asphalt
concrete (AC).  To accomodate our dramatically
increasing traffic loadings, constructing PCC (or rigid)
pavements in some special areas is definitely the future
trend.  Thus, the inconvenience induced by the
frequently needed maintenance and rehabilitation work of
AC (or flexible) pavements, which greatly reduces our
highway's transportability, can be minimized.  Yet, there
still has not been adequate theoretical investigation in the
stress analysis of corcrete pavements.

Cracking of jointed concrete pavements (JCP) is often
caused by three different critical repeated loading
positions: transverse joint, longitudinal joint midway
between transverse joints, and at the corner.  Given
certain design, construction, and loading conditions, any
of these load positioins could lead to fatigue cracking of
the slab over time.

"Load repetition combined with loss of suppor t
and cur ling stresses" are usually recognized as the main
causes for corner breaks.  Thus, this paper mainly
focuses on the determination of the critical bending
stresses at the corner  due to loading and thermal curling.

Two methods can be used to determine the stresses
and deflections in concrete pavements: closed-form
formulas and finite element computer programs.  The
formulas originally developed by Westergaard can be
applied to a single wheel load based on the assumptions
of infinite slab size and full contact between the slab-
subgrade interface.  To more accurately and realistically

account for the effects of a finite slab size as well as
possible loss of subgrade support due to a linear
temperature differential, finite element (F.E.) computer
program should be used.  Nevertheless, the difficulties
of the required run time and complexity of F.E. analysis
often prevent it from being used in practical pavement
design.

The main objectives of this research work are to help
develop an alternative stress determination process which
can be incorporated into existing mechanistic-based
design procedures with sufficient accuracy and efficiency
for practical pavement designs.

2  CLOSED-FORM SOLUTIONS

2.1  Corner Loading

In the analysis of a slab-on-grade pavement system,
Westergaard has presented closed-form solutions for
three primary structural response variables, i.e., slab
bending stress, slab deflection, and subgrade stress, due
to a single wheel load based on medium-thick plate
theory.  Based on the assumptions of an infinite or semi-
infinite slab over a dense liquid foundation (Winkler
foundation), Westergaard applied a method of successive
approximations and obtained the following equations for
a circular corner loading condition (12):
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Where:
σw = critical corner stress, [FL-2];
δw = critical corner deflection, [L];
P = total applied wheel load [F];
h = thickness of the slab [L];
a = radius of the applied load [L];
k = modulus of subgrade reaction [FL-3];
l = radius of relative stiffness of the slab-

subgrade system [L];
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E = modulus of elasticity of the
concrete slab [FL-2]; and

µ = Poisson's ratio of the concrete.

Note that primary dimensions are represented by [F] for
force and [L] for length.  The distance to the point of
maximum stress along the corner angle bisector was
found to be roughly:

X a a1 2 2 2 38= ≅l l. (Eq.3)

The above stress and deflection equations
were derived using a simple approximate
process and has been debated and led to
numerous revisions such as those proposed by
Bradbury, Kelly, Teller and Sutherland,
Spangler, and Pickett over the years (3).
Despite this argument, Ioannides et al. (4) later has
indicated that the ILLI-SLAB F.E. results closely fall
between those predicted by Westergaard and Bradbury.
The ILLI-SLAB stresses are the values of the minor
pr incipal (tensile) stress occurring at the top fiber of the
slab.  This similarity indicated that Westergaard's
approximation was still fairly good.

2.2  Thermal Curling

Considering curling stresses caused by a linear
temperature differential on a concrete slab over a dense
liquid foundation, Westergaard (13) developed equations
for three slab conditions (i.e., infinite, semi-infinite, and
an infinite long strip).  The interior stress for an infinite
slab is:
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Where:
σ0  = curling stress of the slab, [FL-2];
α   = thermal expansion coefficient of the slab,

[T-1];
∆T = a linear temperature differential through the

slab thickness, [T];
Primary dimensions are represented by [F] for force,

[L] for length, and [T] for temperature.
Bradbury (1) later expanded Westergaard's bending

stress solutions for a slab with finite dimensions in both
transverse and longitudinal directions.  The edge and
interior curling stresses can be determined by:
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Where:
σce , σci  = edge and interior curling stresses of the

slab, [FL-2];
          B =finite slab width or length, [L];
  C1 , C2 = curling stress coefficients for  the

desired and perpendicular directions.

However, there exists no explicit closed-form corner
stress solutions for thermal curling alone.

2.3  Loading Plus Thermal Curling

Considering the combined effect of loading plus curling,
Bradbury further analyzed the curling stress on a diagonal
corner section located at or near the section at which the
maximum loading stress occurs, i.e. the location
determined by (Eq.3).  Consequently, Bradbury derived
the following approximate corner curling stress:
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Where:
σct  = maximum curling stress to be combined with

maximum stress induced by load at the
corner, [FL-2].

Even though Westergaard and Bradbury all suggested
that this effect could be treated as "a simple mater of

addition" in most cases, many investigators have
indicated that such an action may not always be
conservative (4, 9) due to the possible loss of subgrade
support and violation of full contact assumptions. This
problem will be further investigated in the subsequent
sections.

3  F.E. COMPUTER PROGRAM

The analysis of finite slab length and width effect was not
possible until the introduction of finite element models.
The basic tool for this analysis is the ILLI-SLAB F.E.
computer program which was originally developed in
1977 and has been continuously revised and expanded at
the University of Illinois over the years.  The ILLI-
SLAB model is based on classical medium-thick plate
theory, and employs the 4-noded 12-degree-of-freedom
plate bending elements.  The Winkler foundation
assumed by Westergaard is modeled as a uniform,
distributed subgrade through an equivalent mass
foundation.  Curling analysis was not implemented until
versions after June 15, 1987.

The present version (March 15, 1989) (9) was
successfully complied on available Unix-based
workstations of the Civil Engineering Department at
Tamkang University.  With some modifications to the
original FORTRAN codes, a micro-computer version of
the program was also successfully developed using
Microsoft FORTRAN PowerStation (10) under this study.

  
4  IDENTIFICATION OF DOMINATING
MECHANISTIC VARIABLES

4.1  Principles of Dimensional Analysis

When there exist no closed-form solutions for the
selected theoretical analysis tools or when analyzing most
empirical but practical engineering problems, the use of
the principles of dimensional analysis is often guaranteed.
The principles of dimensional analysis treate a theoretical
equation in non-dimensional form, which is comprised by
a set of many dimensionless paremeters representing a
concise interrelationship among any complicated
combinations of all input variables with dimensions.
Thus, the number of parameters and data analysis time
and costs may be reduced dramatically.  This approach
has also been widely accepted for engineering research.
   
4.2  Dimensionless Mechanistic Variables

Through the use of the principles of dimensional analysis,
earlier investigators (6) have demonstrated that



theoretical Westergaard solutions and F.E. solutions for
three primary structural responses due to a single wheel
load can be concisely defined by the following expression
for a constant Poisson's ratio (usually µ ≈ 0.15):
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Where:
σ, q = slab bending stress and vertical

subgrade stress, respectively, [FL-2];
    δ = slab deflection, [L];
    f1 =function of a/l, L/l, and W/l; and

 L, W = finite slab length and width, [L].

Note that variables in both sides of the expression are
all dimensionless.  The dependent variables are σh2/P,
δkl2/P and ql2/P, which are only dominated by the
normalized load radius (a/l), and the normalized slab
length and width (L/l and W/l) rather than the other input
parameters, such as E, h,  k, a, etc.

Furthermore, according to recent research by Lee and
Darter (5, 6) for the stress analysis at the very edge of the
slab, conscise relationships have been proposed and
numerically validated through a series of F.E. runs.  The
dimensionless mechanistic variables due to the effects of
thermal curling alone and loading plus curling for a
constant Poisson's ratio are:
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Where:
γ = unit weight of the concrete slab, [FL-3];
f2 , f3 = functions for curling alone and curling plus

loading, respectively.

Note that Dγ  was defined as the relative deflection
stiffness due to self-weight of the   concrete slab and
the possible loss of subgrade support, whereas Dp  was
the relative deflection stiffness due to the external wheel
load and the loss of subgrade support.

Conceptually, the above relationship should be
applicable to any given case of loading conditions.  To
numerically validate the above relationships for the
individual and combined corner stresses due to loading
and thermal curling in this study, several series of
factorial F.E. runs were performed.  While keeping the
dominating mechanistic variables constant but changing
any other individual input variables to different values,
the F.E. results have indicated  that the aforementioned
relationships also hold for the corner condition as
expected.  Detailed summary tables of this analysis can
be found in Reference (8).

5  FACTORIAL F.E. RUNS

A series of F. E. factorial runs were performed based on
the dominating mechanistic variables identified.
Several BASIC programs were written to automatically
generate the finite element input files for future routine
analyses.  The F. E. mesh was generated according to
the guidelines established in earlier studies (3).  The
desired results were also automatically summarized to
reduce the possibility of  untraced processing errors.

6  STRESS PREDICTION MODELS

With the incorporation of the principles of dimensional
analysis, a series of finite element factorial runs over a
wide range of pavement designs were carefully selected
and conducted.  The resulting corner stresses due to
loading and curling are compared to the theoretical
Westergaard solutions.  Adjustment or multiplication
factors (R) were introduced to account for this theoretical
discrepancy.

As proposed by Lee and Darter (7), the projection
pursuit regression (PPR) introduced by Friedman and
Stuetzle (2) was utilized to assist in the proper selection
of functional forms.  Through the use of local smoothing
techniques, the PPR attempts to model a multi-
dimensional response surface as a sum of several
nonparametric functions of projections of the explanatory
variables.  The projected terms are essentially two-
dimensional curves which can be graphically represented,
easily visualized, and properly formulated.  Nonlinear or
piece-wise linear regression technique can then be
utilized to obtain the parameter estimates for the specified
functional forms of the predictive models.  This
regression algorithm is available in  S-PLUS statistical
package (11).



6.1  Predictive Models for Loading Only

Based on previous investigation (4), Westergaard's
inifinte slab assupmtion may be achieved if the
normalized slab length (L/l)
is equal to 5.0 or more.  Thus, a more conservative value
of 7.0 for both L/l and W/l  was selected to ensure
infinite slab condition.  The following factorial F.E. runs
were conducted:

a/l: 0.05, 0.1, 0.2, 0.3
L/l: 2, 3, 4, 5, 6, 7
W/l: 2, 3, 4, 5, 6, 7 (L/l ≧ W/l)

Since L/l and W/l are analogous, a total of 84 runs
were only necessary if slab length was chosen to be
greater than slab width.  The resulting maximum corner

stresses (σ i ) were obtained and compared to the

Westergaard soultion (σ w  ) as shown in
(Eq.1).

By using the aforementioned PPR modeling
approach, the following predictive model for
the adjustment factor (R

L
) was developed:

R 1.030 + 0.030 + 0.045

= 92.415 -  149.276(A1)  59.747(A1)

=
-  6.034 +  23.128(A2) -  22.022(A2) A2

- 0.117 +  0.375(A2)

A1 = 0.8272 - 0.1219 + 0.0002 + 0.5485
A2 = -0.9034 1+ 0.2973 2 - 0.0118 3- 0.3088 4

a L
+

W L
*

W L
+

W

L

2

2

= =

+

≤
<





=

=










σ
σ

i

w

if
if A

x x x x
x x x x

X x x x

Φ Φ

Φ

Φ

1 2

1

2

0 6
0 6 2

1 2 3 4

1 2 4

.
.

[ , , ... , ]

, , ,
l l l l l l l

(Eq.9)
Statistics:

N=84, R2=0.980, SEE= 0.0081, CV=0.79%
Limits:

0 05 0 3 2 7. / . , / , / /≤ ≤ ≤ ≤ ≤a L W Ll l l l

Note that N is the number of data points,
R2 is the coefficient of determination, SEE  is the
standard error of estimates, and CV is the coefficient of
variation.  This prediction model is also applicable to a
larger slab when the upper bound value of 7.0 is used for
the normalized slab length or width (L/l, W/l).

6.2  Predictive Models for Loading Plus Curling

The combination effect of loading plus curling cannot be
adequately described using the principle of superposition

due to the violation of full contact assumption between
slab and subgrade.  Since night-time (negative ∆T )
curling condition will result in additional
tensile stress at the top fiber of the slab,
this study is only limited to the most
critical case of corner loading plus night-
time curling.

Unlike the analysis of interior or edge
stresses where the maximum stresses occur in
the same specified position, the analysis of
corner stresses is probably the most difficult
one among them.  A preliminary corner stress
analysis of the ILLI-SLAB program has clearly
indicated that the location of maximum
combined stress due to loading plus curling
varies from case to case.  Generally speaking,
if temperature differentials are relatively
small combined with a large corner load, the
critical stress location is very close to
Westergaard's maximum load stress location
(Eq.3).  However, if temperature differentials
are very large along with a very small corner
load, the critical stress location may shift
toward and up to the center of the slab.

Research continues with special attentions
to this different critical stress location
problem.  Consequently, necessary
modifications were made to the existing ILLI-
SLAB codes to facilitate the search of
critical stresses and locations alone the
corner angle bisector or the diagonal nodes up
to the center of the slab.

A complete full factorial of all the six
dimensionless parameters which requires a
tremendous amount of computer time is not
feasible.  Thus, to minimize the total number
of runs for the analysis, the following
factorial of ILLI-SLAB runs was performed:

a/l: 0.05, 0.1, 0.2, 0.3
L/l: 2, 3, 4, 5, 7, 9, 11, 13, 15  (L/l ＝ W/l)
∆T : 0, -10, -20, -30, -40

(α = −55 06. /E Fo
)

A square slab with a constant thermal
expansion coefficient was assumed.  To account

for Dγ  and Dp  effects without increasing the number of
F.E. runs, the above factorial runs were randomized by



these two factors for different a/l values.  The
corresponding values are given below:

a/l   (DG, DP)
0.05 (1, 2)  (10, 30)  (7, 130)
0.10 (4, 30)  (7, 70)  (4, 130)
0.20 (4, 2)  (7, 30)  (10, 70)
0.30 (1, 2)  (10, 70)  (1, 130)

Note:  
DG D DP Dp= =γ * , *10 105 5

The following adjustment factor ( RT ) was
introduced to quantify the difference between
stresses due to loading and curling alone.
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Where:

σ i  = combined maximum F.E. corner stress,
[FL-2];

σ L  = F.E. corner stress due to loading

alone (∆T =0), which may also be

estimated by ( RL w*σ ), [FL-2]; and
σ 0  = as defined by (Eq.4).

By using the PPR algorithm, the following
model for adjustment factor R

T
 was developed:
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Where: ADT = α∆T x 105

Statistics:
N=432, R2=0.97, SEE= 0.051
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7  PRACTICAL DESIGN EXAMPLES

Consider a pavement slab with the following
characteristics: E = 3 Mpsi, k = 400 pci, L =
141 in., W = 141 in., h = 9.97 in., γ= 0.224
pci, μ = 0.15, and α= 5.5 x 10-6 / oF.  A single wheel
load of 7,624 lbs with a loaded rectangle of the size of
10x10 in2 is applied at the slab corner.  A linear
temperature differential of -10 oF (night-time curling)
exists through the slab thickness.  Determine the critical
corner stresses due to loading alone, and loading plus



curling.  (Note: 1 psi = 6.89 kPa, 1 pci = 0.27 MN/m3,
1 in. = 2.54 cm, 1 oF = (F - 32) / 1.8 oC, 1 lb = 4.45 N.)

The equivalent radius of the loaded area is a = 5.64 in.
and the radius of relative stiffness of the slab-subgrade
system is l =  28.21 in.  Therefore, the actual dominating

mechanistic variables are a/l = 0.2, L/l = W/l = 5, α∆T
= 5.5E-05,  Dγ  = 7E-05,  and Dp  = 30E-05.  The
theoretical Westergaard solutions based on (Eq.1) and

(Eq.4) are σ w  = 122.2 psi andσ 0  = 97.1 psi
for loading and curling alone.

For the case of loading only, the

adjustment factor RL  = 1.062 using (Eq.9).
Thus, the corner stress determined by the
proposed model is 1.062 x 122.2 = 129.8 psi.
(Note that the actual ILLI-SLAB stress was
129.1 psi.)

For the case of loading plus curling, the

adjustment factor is RT  = 0.188 based on
(Eq.11).  Thus, the predicted total corner
stress determined by the proposed model is
129.8 + 0.188 x 97.1 = 148.1 psi using
(Eq.10) . (Note that the actual ILLI-SLAB
corner stress was 147.5 psi for this case.)

8  CONCLUSIONS

The corner stress of a concrete slab due to
the individual and combination effects of
loading and night-time curling was conducted
under this study.  A linear temperature
differential across the slab thickness and a
dense liquid foundation were assumed.  Based
on the principles of dimensional analysis, six
dimensionless mechanistic variables which
dominate the primary structural responses were
used for the analysis.  A new modeling
procedure was utilized to develop stress
prediction models.

The prediction models were properly
formulated to satisfy applicable engineering
boundary conditions.  The models not only
cover almost all practical ranges of pavement
designs, but they are also dimensionally
correct.  These models can be implemented as a
part of a design procedure to the very time-
consuming and complicated F.E. analysis to
estimate stresses for design purposes with

efficiency and sufficient accuracy.  A
practical design example showing the use of
the models was provided and carefully
validated.
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