The 8th REAAA Conference

Theoretical Investigation of Corner stress in Concrete Pavements Using Dimensional Analysis

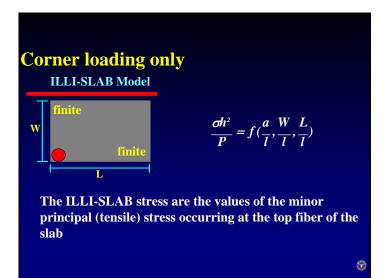
Speaker: Ying-Haur Lee Dept. of Civil Eng. Tamkang University

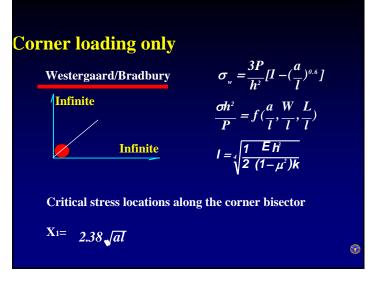
OBJECTIVES

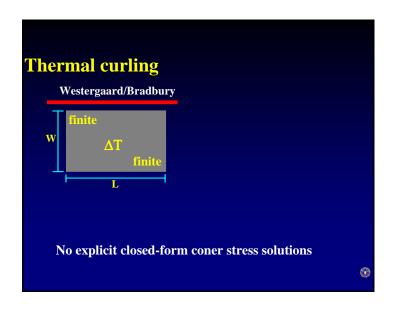
Determine the critical bending stresses at the slab corner due to loading & curling

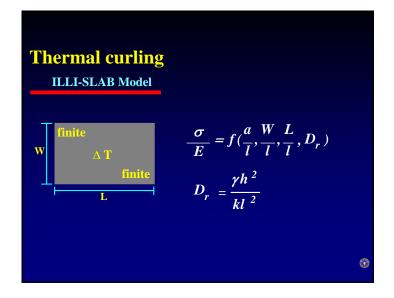
 Free corner loading combined with negative temperature gradient (upward curling)
 Develop an alternative stress determination process that could be utilized in a spreadsheet or PC program for rapid calculation purposes
 May become a part of mechanistic design procedure and encourage use by practitioners

Corner Break

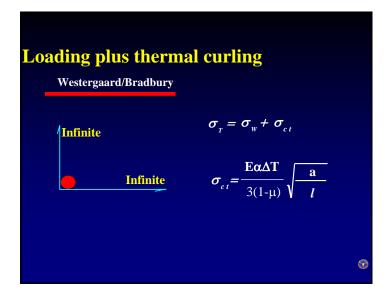

6

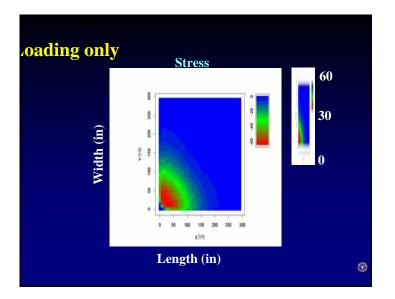

- Load stress located at free corner curling stress - negative temp. gradient (nighttime)
- n combined stress

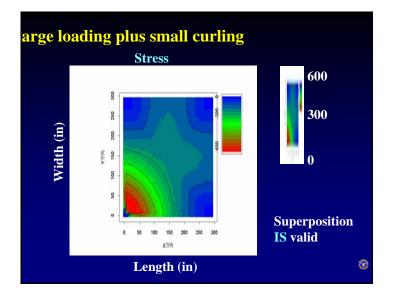


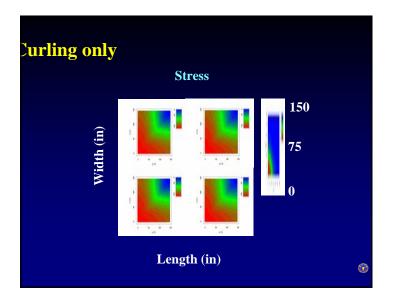

Research Approach

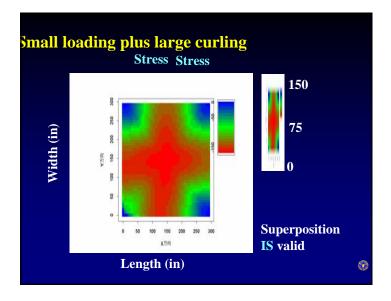
 Compare Theoretical Westergaard/Bradbury closed-form solutions & F.E. computer program (ILLI-SLAB)
 Identify the dominating mechanistic variables using the principle of dimensionless analysis
 Investigation the characteristics of pavement structural response due to loading & curling
 Conduct factorial F.E. runs
 Develop stress prediction models using the PPR technique

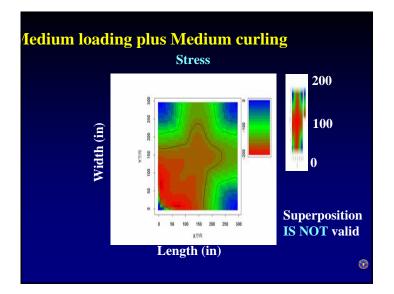


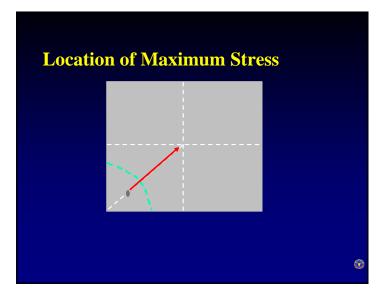

Loading plus thermal curling ILLI-SLAB Model


$$\frac{\sigma h^2}{P} = f(\frac{a}{l}, \frac{W}{l}, \frac{L}{l}, D_r, D_p)$$
Dr: $\frac{\gamma h^2}{kl^2}$
Dr: $\frac{Ph^2}{kl^4}$




Now, We are


Compare Theoretical Westergaard/Bradbury closed-form solutions & F.E. computer program (ILLI-SLAB) Identify the dominating mechanistic variables using the principle of dimensionless analysis Investigation the characteristics of pavement structural response due to loading & curling Conduct factorial F.E. runs Develop stress prediction models using the PPR technique



Now, We are.....

- ✓ Compare Theoretical Westergaard/Bradbury closed-form solutions & F.E. computer program (ILLI-SLAB)
 - Identify the dominating mechanistic variables using the principle of dimensionless analysis
- Investigation the characteristics of pavement structural response due to loading & curling
 - Conduct factorial F.E. runs
 - Develop stress prediction models using the PPR technique

Stress prediction model for loading only

- Factor F.E. runs
- a//: 0.05,0.1,0.2,0.3 L//:2,3,4,5,6,7 W//:2,3,4,5,6,7(L/l>=W/l) Total of 84 runs $\sigma_i=RL \times \sigma_w$

 $=f(\frac{a}{l},\frac{W}{l},\frac{L}{l})$

 \mathbf{R}_{L}

6

n Statistics N=84,R =0.980, SEE=0.0081,CV=0.79%

<u>Limits</u>

0.05 < a/l < 0.3 $2 \le L/l < 7$ $W/l \le L/l$

Factor F.E. runs

a/l:0.05,0.1,0.2,0.3 L/l:2,3,4,5,7,9,11,13,15	a/l	(DG,DP)
(L/I=W/I) Total of 432 runs	0.05	(1,2) (10.30) (7,130)
$\sigma_i = \sigma_L + RT \times \sigma_0$	0.10	(4,30) (7,70) (4,130)
$\mathbf{R}r = \underbrace{\mathbf{\sigma}_{i} - \mathbf{\sigma}_{L}}_{\mathbf{\sigma}_{0}}$	0.20	(4,2) (7,30) (10,70)
	0.30	(1,2) (10,70),1,130)
		(

Validation of the models

Stress prediction model for loading plus curling

n Statics	Limits		
N=432,	$0.05 \le a/l \le 0.3$		
	2 < L/l < 15		
R =0.97,	W/l = L/l		
	5.5 < ADT < 22		
SEE=0.051	$1 \le DG \le 10$		
	$2 \leq DP \leq 130$		

Conclusions

- Developed alternative stress prediction models
 Investigation the characteristics of pavement structural response due to loading & curling
 Identified the dominating mechanistic variables using the principle of dimensionless analysis
- very accurate representation of the predict model

Acknowledgments

This research work was sponsored by the National Science Council, the Republic of China, under the grant No. NSC83-0410-E032-009

6

THANKS FOR YOUR ATTENTION!

Speaker: Ying-Haur Lee Dept. of Civil Eng. Tamkang University

