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ABSTRACT: This study strives to illustrate the benefits of incorporating the principles of 
dimensional analysis, subject-related knowledge, and statistical knowledge into pavement 
prediction modeling process. Modern regression techniques including local regression and 
regression splines as well as back propagation neural networks were briefly introduced. 
Factorial 2-D and 3-D finite element runs and BISAR runs for different pavement systems 
were conducted to generate the deflection databases for the analysis. The resulting ANN 
model using all dominating dimensionless parameters was proved to have higher accuracy 
and require less network training time than the other counterpart using purely input 
parameters. Increasing the complexity of ANN models does not necessarily improve the 
modeling statistics. The results also showed that using higher number of neurons and hidden 
layers sometimes lead to even worse modeling statistics which was an indication of over 
training and should be avoided. Several local regression models requiring minimal amount of 
modeling time were also developed using the same databases.  
 
KEY WORDS: Pavement deflection, prediction modeling, dimensional analysis, local 
regression, artificial neural networks. 
 
 
1. INTRODUCTION 
 
Predictive models have been widely used in various pavement design procedures, evaluation, 
rehabilitation, and network management systems. Empirical and mechanistic-empirical 
approaches using statistical regression techniques have been utilized extensively in predicting 
extremely complicated pavement responses and performance indicators for more than four 
decades.  Using purely empirical concepts to develop predictive models is not recommended. 
Lee (1993) proposed a systematic statistical and engineering modeling approach which 
strongly recommends to incorporate theoretical engineering knowledge, expert experience, 
heuristics, and statistical data analysis and regression techniques altogether into the 
framework to develop more mechanistic-based predictive models. In additional to the 
conventional “parametric” linear and nonlinear regression techniques, several ingenious 
iterative regression techniques in the area of “robust” and “nonparametric” regressions were 
also incorporated. The proposed approach has been successfully implemented in the 
development of many purely empirical predictive models (Lee et al., 1993; Lee & Darter, 
1995), purely mechanistic predictive models (Lee & Darter, 1994a; 1994b) as well as the 
mechanistic-empirical predictive models adopted in the early analyses of LTPP general 
pavement studies data (Simpson et al., 1993). 



 
Significant progress has been reported in pavement prediction modeling of simulated data 
using artificial neural networks (ANN). Back propagation networks (BPN) can be taught from 
one data space to another using representative set of data to be learned. The learning 
process actually refers to a multi-layered, feed-forward neural network trained by using an 
error back propagation algorithm or an error minimization technique (Haykin, 1999; Hecht-
Nielsen, 1990). Ceylan (2004) conducted a literature search summarizing recent ANN 
applications in pavement structural evaluation such as backcalculating pavement layer moduli 
and predicting primary pavement responses (e.g., stress and deflection). As with many ANN 
applications in the literature (Haussmann et al., 1997; Meier et al., 1997; Ceylan et al., 1998; 
1999; 2004; Ceylan & Guclu, 2005), original pertinent input parameters were used to 
generate the training and testing databases. This approach often requires tremendous 
amount of time and efforts in network training and testing. To reduce the size of the required 
factorial databases, researchers sometimes opt to fix certain input parameters to some 
prescribed values as a special case study, which may result in limiting the inference space of 
the resulting model. 
 
Nevertheless, some earlier ANN literature has also illustrated that the incorporation of the 
principles of dimensional analysis lead to significant savings during the training set 
generation. Ioannides et al. (1996) trained a back propagation neural network (BPN) to 
determine the in situ load transfer efficiency of rigid pavement joints from Falling Weight 
Deflectometer (FWD) data. Khazanovich and Roesler (1997) developed an ANN-based 
backcalculation procedure for composite pavements. The multilayer elastic program 
DIPLOMAT was used to analyze a three-layer pavement system consisting of an AC surface 
layer over a PCC slab resting on a Winkler foundation. Ioannides et al. (1999) trained BPN 
models to predict the critical slab bending stress for loading-only, curling-only, and loading-
and-curling cases. BPN predictions were compared against the Westergaard closed-form 
solutions as well as the statistical regression models developed by Lee and Darter (1994a) 
using a small set of factorial data with dimensionless mechanistic variables. It was re-
emphasized that mature engineering judgment and in-depth understanding of the mechanics 
of the phenomenon remain the most reliable guides in the formation of the problems to be 
analyzed.  
 
Attoh-Okine (1994) proposed the use of ANN models in predicting roughness progression of 
flexible pavements. Although the results were promising, some built-in functions including 
learning rate and momentum term which form key neural network algorithm were not 
investigated. Attoh-Okine (1999) used real pavement condition and traffic data and specific 
architecture to investigate the effect of learning rate and momentum term on BPN models for 
the prediction of flexible pavement performance. Sorsa et al. (1991) indicated that adding 
many hidden layers gets the network to learn faster and the mean square error becomes a 
little smaller, but the generalization ability of the network reduces. 
 
Ripley (1993) discussed many statistical aspects of neural networks and tested it with several 
benchmark examples against traditional and modern regression techniques, such as 
generalized discriminant analysis, projection pursuit regression, local regression, tree-based 
classification, etc. Ripley concluded that in one sense neural networks are little more than 
non-linear regression and allied optimization methods.  “That two-layer networks can 
approximate arbitrary continuous functions does not change the validity of more direct 
approximations such as statistical smoothers, which certainly ‘learn’ very much faster” (Ripley, 
1993). Projection pursuit regression highlights the value of differentiated units and other 
training schemes and offers computation shortcuts through forward and backward selection.  
Statistical and subject-related knowledge can be used to guide modeling in most real-world 



problems and so enable much more convincing generalization and explanation, in ways which 
can never be done by ‘black-box’ learning systems (Ripley, 1993). 
 
As part of continuous research efforts in pavement design and analysis (Lee et al., 1994a; 
1998; 2004), modern regression techniques and artificial neural networks (ANN) are utilized 
in this study to improve the prediction accuracy of simulated pavement deflections (Wu, 2003; 
Liu, 2004). Factorial 2-D and 3-D finite element runs and BISAR runs for different pavement 
systems are conducted to generate the deflection databases for the analysis. This study 
strives to illustrate the benefits of incorporating the principles of dimensional analysis, 
subject-related knowledge, and statistical knowledge into prediction modeling process.  
 
2. MODERN REGRESSION TECHNIQUES 
 
2.1 Revised two-step modeling approach using projection pursuit regression 
 
The proper selection of regression techniques is one of the most important factors to the 
success of prediction modeling. Since most of the regression algorithms currently available do 
not directly consider interaction effects during the modeling process, the interaction terms 
must be subjectively determined prior to performing a regression analysis. With the multi-
dimensional pavement engineering problems in mind, several unresolved deficiencies are 
frequently identified in the use of stepwise regression and nonlinear regression. These 
include problems in the selection of correct functional form, violations of the embedded 
statistical assumptions, and failure to satisfy some engineering boundary conditions. 
 
The projection pursuit regression (PPR), however, appears to have the most favorable 
features in handling these problems, which strives to model the response surface (y's) as a 
sum of nonparametric functions of projections of the predictor variables (x's) through the use 
of super smoothers. More technical details about the development process, the application, 
and the demonstration on modeling interactions of the PPR algorithm can be found in the 
literature (Friedman & Stuetzle, 1981; Friedman, 1984; Mathsoft, Inc. 1997). The S-PLUS 
statistical package, which has been widely used by statisticians, was selected for the analysis 
due to the availability of this regression technique. 
 
As a result, a two-step regression analysis procedure was proposed by Lee and Darter 
(1994b) to better find the correct functional form and to better fit the response surface. With 
the help of the PPR, a multi-dimensional response surface is broken down into the sum of 
several smooth projected curves which are graphically representable in two dimensions. 
Plausible functional forms and applicable boundary conditions may then be easily identified 
and specified through visual inspection and/or engineering knowledge of physical 
relationships to model these individual projected curves separately. Traditional parametric 
regression techniques such as linear, piecewise-linear, and nonlinear regressions are then 
utilized for these purposes with higher confidence in the parameter estimates.  
 
In this study, regression spline algorithm (Ker, 2002) was adopted in lieu of piecewise-linear 
regressions at the second step to assure smooth junctions at the change points. A spline 
function is a piecewise polynomial regression. An n-spline function is an n-degree polynomial 
with n-1 continuous derivatives at the change points.  These change points are called “knots” 
in spline literature. Spline functions can be viewed as a data-smoothing regression function 
and/or a way to improve polynomial approximation of regression function. In most cases, a 
spline can be represented as a linear combination of some basis functions that have 
polynomial forms. Polynomials can be viewed as a special case of spline with no knots (Smith, 
1979).  In fitting a spline model, the prediction should be within the data range. Cubic 



splines with continuous second derivatives at the knots are most commonly used in most 
applications (Seber & Wild, 1989).  Cubic splines are most popular in spline applications 
because they are of low degree and relatively smooth (assuming continuity restriction up to 
second derivative only), and possess the power to incorporate several different trends in the 
range of the data by increasing the number of knots (Smith, 1979). 
 
2.2 Locally-weighted regression (loess) technique 
 
The locally weighted regression (loess) technique is an approach to regression analysis by 
local fitting developed by Cleveland and Devlin (1988). Cleveland and Grosse (1991) provided 
computational methods for local regression. A particular data structure called k-d tree is used 
for partitioning space by recursively cutting cells in half by a hyperplane orthogonal to one of 
the coordinate axes. The loess approach uses a smoothing technique for fitting a nonlinear 
curve to the data points locally, so that any point of the curve depends only on the 
observations at that point and some specified neighboring points. The number of neighbors 
(k) is specified as the percentage of the total number of points or “span”. Local regression 
models provide much greater flexibility in fitting a multi-dimensional response surface as a 
series of many sub-divided regions with single smooth functions of all the predictors. There 
are no restrictions on the relationships among the predictors.  
 
Figure 1 depicts the concept of loess k-d tree algorithm. This algorithm is available in the S-
PLUS statistical package (Mathsoft, Inc., 1997). As currently implemented, locally quadratic 
models may have at most 4 predictor variables and locally linear models may have at most 
15 predictors. The original FORTRAN and C codes for the loess algorithm can also be 
obtained from the ftp site: “ftp research.att.com.”  
 

   
Figure 1. Illustration of loess k-d tree algorithm (Cleveland & Grosse, 1991). 
 
3. ARTIFICIAL NEURAL NETWORKS 
 
Artificial Neural Networks (ANN) provides a flexible way to generalize linear regression 
functions. They are nonlinear regression models but with so many parameters extremely 
flexible to approximate any smooth function. The most commonly used rule is the 
generalized delta rule or back propagation algorithm. Ripley (1993) provided the detail 
definitions and brief derivation of a back propagation network (BPN). The learning procedure 
has to select the weights and the biases by presenting the training examples in turn several 
times, while striving to minimize the total squared error: 
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data in the training set.  However, the questions of how many layers and how many neurons 
should be used were treated very lightly in the literature. 
 
A neural network modeling software package called Qnet v2000 for Windows (Vesta Services, 
Inc. 2000) was adopted for this study. The convergence characteristics of various activation 
(or transfer) functions including step function, logistic or sigmoid function, hyperbolic tangent 
function, and radial basis function as shown in Figure 2 will be further investigated (Mehrotra 
et al., 1997; Smith, 1996). 
 
(a)                                   (b) 

 
(c)                                 (d) 

 
Figure 2. Illustration of various activation (or transfer) functions: (a) step function, (b) logistic 
or sigmoid function, (c) hyperbolic tangent function, and (d) radial basis function. 
 
4. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS AND MODERN REGRESSION 
TECHNIQUES 
 
4.1 Rigid pavement deflection prediction models of infinite slab size 
 
Based on the principles of dimensional analysis, Ioannides et al. (1989) indicated that the 
structural responses of a rigid pavement such as or the dimensionless deflection parameter 
(δkl2/P) are dominated by the following four dimensionless variables: the normalized load 
radius (a/l), the normalized finite slab length (L/l), the normalized finite slab width (W/l), 
and the normalized radial distance (r/l) for 2-D FEM analysis. In which δ is the deflection, [L]; 
k is the modulus of subgrade reaction, [FL-3]; P is the single wheel load, [F]; l=(E*h3/(12*(1-
μ2)*k))0.25 is the radius of relative stiffness of the slab-subgrade system [L]; E is the modulus 
of the concrete slab, [FL-2]; h is the thickness of the slab, [L]; μ is the Poisson’s ratio. Note 
that primary dimension for force is represented by [F], and length is represented by [L]. To 
illustrate the benefits of incorporating the principles of dimensional analysis into the 
modeling process, the following case studies were conducted: 
 
4.1.1 ANN models 
 
For an infinite single slab resting on a Winkler foundation under interior loading condition, 
factorial ILLI-SLAB runs were conducted based on the following input parameters: single 



wheel load P=40 kN (9,000 lbs); tire pressure p=0.62 MPa (90 psi); modulus of the concrete 
slab E= 13.78~48.23 GPa (2~7 Mpsi); modulus of subgrade reaction k=13.5~175.5 MN/m3 
(50~650 pci); and slab thickness h= 15.2~76.2 cm (6~30 in.). These input parameters were 
such selected to cover wider ranges of practical cases. The dependent variable is the 
deflection δ and the explanatory variables are E, k, h, and r. The resulting deflection 
database consists of 12,329 data points, in which 11,329 observations were randomly 
selected for actual training and the remaining 1,000 data points was used to monitor the 
training process. Step activation function was first tried with extreme difficulty in achieving 
convergence. Subsequently, sigmoid activation function was chosen for the modeling process. 
The summary statistics of the NET1 model is shown in Table 1. Note that since certain input 
parameters were fixed to some prescribed values to reduce the size of the required factorial 
database, the applicability of this special case study is rather limited. 
 
Table 1. Comparison of two different ANN models  
ANN Type NET1 NET2 
Outputs 　 R 
Inputs  E, k, h, r a/l, r/l 

Data Points Training: 11,329 
Monitoring: 1,000 

Training: 394 
Monitoring: 100 

Hidden Layer(s)  2 1 
Neurons in Each Hidden Layer 12-12 6 
Learning Cycle 30,000 10,000 
Learning Rate 0.5 0.1 
Modeling Time 6 hrs 43 min. 42 min. 

RMS Training: 0.00290 
Monitoring: 0.00420 

Training: 0.00377 
Monitoring: 0.00360 

Coefficient of Determination, R2 0.999 0.9999 
 
Alternatively, the aforementioned factorial ILLI-SLAB runs may be generalized based on the 
following dimensionless parameters: a/l=0.05~0.4 (step by 0.01) and r/l ranges from 0 to 
3.2 determined by automatic mesh generation. To simulate infinite slab size conditions, 
L/l and W/l were greater than or equal to 8. Thus, a 2-D rigid pavement deflection database 
with 494 data points was obtained (Liu, 2004). The dependent variable is the deflection ratio 
(R) defined as the ratio of the deflection at any radial distance to the resulting maximum 
deflection. In which 394 data points were used for actual ANN training and the remaining 
100 observations were used to monitor the training process. The convergence characteristics 
of various activation functions were investigated. As shown in Figure 3(a), it was noted that 
sigmoid activation function has better convergence characteristics than hyperbolic tangent 
function. Using a single hidden layer with only 5 neurons, sigmoid function completed 10,000 
training cycles in 35 minutes whereas hyperbolic tangent function needed 60 minutes, 
although the resulting root mean squared errors (RMS) had no much difference. Radial basis 
activation function was also tried with extreme difficulty in achieving convergence. In 
addition, increasing the number of neurons during the network training process does not 
necessarily improve the modeling statistics. On the contrarily, as shown in Table 2 and Figure 
3(b) the resulting RMS and training time increased while increasing the number of neurons in 
the hidden layer. Since the model with only six neurons had the lowest RMS, it was chosen as 
the proposed model (NET2) as summarized in Table 1. It was also concluded that with the 
incorporation of dimensional analysis in the modeling process, the requirements on database 
generation and network training time could be greatly reduced. 
 



Table 2. Summary statistics of different ANN models 
Number of Neurons in the Hidden Layer ANN Type 
5 6 7 8 9 10 

Training RMS 0.00416 0.00377 0.00524 0.00569 0.00554 0.00520 
Monitoring RMS 0.00384 0.00360 0.00492 0.00529 0.00520 0.00490 
R-Squared 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
Training Time 35 min. 42 min. 52 min. 60 min. 67 min. 82 min. 
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Figure 3. Comparison of convergence characteristics: (a) due to different activation functions; 
(b) due to different number of neurons in the hidden layer. 
 
4.2 Rigid pavement deflection predictions of finite slab size 
 
To further investigate the convergence characteristics of different ANN models and to 
illustrate the possibility of over training, the following case studies were conducted. 
 
4.2.1 ANN models 
 
Similarly, for a finite single slab resting on a Winkler foundation under interior loading 
condition, factorial ILLI-SLAB runs were conducted based on the following input parameters: 
a/l=0.05~0.4, L/l= 2~7, W/l=2~7, and r/l ranges from 0 to 3.2 determined by automatic 
mesh generation. A 2-D rigid pavement deflection database with 2,227 data points was 
obtained (Liu, 2004). The dependent variable is the deflection ratio (R) defined as the ratio 
of the deflection at any radial distance to the resulting maximum deflection. The explanatory 
variables are the following dimensionless variables: a/l, L/l, W/l, and r/l. 
 
In which 2,027 data points were randomly selected for actual ANN training and the remaining 
200 observations were used to monitor the training process. Similarly, it was noted that 
sigmoid activation function has better convergence characteristics than hyperbolic tangent 
function. Using a single hidden layer with only 8 neurons and learning rate = 0.01, sigmoid 
function completed 30,000 training cycles in 11 minutes whereas hyperbolic tangent function 
needed 20 minutes, although the resulting root mean squared errors (RMS) had no much 
difference. Radial basis activation function was also tried, but extreme difficulties were 
encountered in achieving convergence. By increasing the number the hidden layers from 1 to 
2 and the number of neurons from 8 to 13 during the network training process, the resulting 
RMS and training time are summarized in Table 3. The convergence characteristics of 
different ANN models with 8 neurons in the first hidden layer were shown in Figure 4. The 
ANN model with 8 neurons in the first hidden layer and 1 neuron in the second hidden layer 
was chosen as the proposed model due to its relatively small RMS. The results also showed 
that more complicated ANN models using higher number of hidden layers and neurons 



sometimes lead to even worse modeling statistics which was an indication of over training 
and should be avoided. 
 
Table 3. Summary statistics of ANN models with different number of layers and neurons 

Number of Neurons in the First Hidden Layer  ANN 
Type 

    

Summary 
Statistics 8 9 10 11 12 13 

Training RMS 0.01037 0.00965 0.00974 0.00782 0.00887 0.00925
Monitoring RMS 0.01007 0.00966 0.01046 0.00785 0.00923 0.01011
R-Squared 0.9988 0.9989 0.9989 0.9993 0.9991 0.9989 0 

Training Time 11 min. 12 min. 13 min. 15 min. 16 min. 17 min. 
Training RMS 0.00552 0.00550 0.00562 0.00553 0.00602 0.00539
Monitoring RMS 0.00565 0.00594 0.00518 0.00513 0.00562 0.00568
R-Squared 0.9997 0.9997 0.9996 0.9997 0.9997 0.9997 1 

Training Time 11 min. 12 min. 13 min. 16 min. 17 min. 21 min.
Training RMS 0.00714 0.00620 0.00563 0.00668 0.01102 0.00589
Monitoring RMS 0.00711 0.00604 0.00581 0.00613 0.01028 0.00713
R-Squared 0.9994 0.9996 0.9994 0.9995 0.9988 0.9995 2 

Training Time 13 min. 13 min. 15 min. 18 min. 19 min. 22 min.
Training RMS 0.00599 0.00751 0.00581 0.00817 0.00981 0.01008
Monitoring RMS 0.00549 0.00831 0.00588 0.00864 0.00904 0.01061
R-Squared 0.9997 0.9988 0.9991 0.9988 0.9979 0.9978 3 

Training Time 15 min. 16 min. 17 min. 19 min. 21 min. 24 min.
Training RMS 0.00570 0.00748 0.00558 0.01005 0.00673 0.00671
Monitoring RMS 0.00569 0.00803 0.00559 0.01074 0.00656 0.00726
R-Squared 0.9993 0.9988 0.9994 0.9978 0.9978 0.9991 N
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Figure 4. Comparison of convergence characteristics: (a) training data; (b) testing data. 
 
4.2.2 Loess models 
 
Several S-PLUS trials of local regressions were conducted using the same database. The 
response variable was chosen as the deflection ratio (R) and the explanatory variables were 
a/l, L/l, W/l, and r/l. The resulting loess model was easily obtained requiring minimal 
amount of modeling time, in which the smoothing parameter “span” was chosen as 0.1, 
whereas the “cell” argument was chosen as 0.01. The following regression statistics were 
obtained: the number of observations = 2,227; equivalent number of parameters = 31.9; 
residual standard error = 0.006376; and multiple R-squared = 1. The resulting errors were 
still relatively small even when the proposed loess model was quite simple. 
 



4.3 Three-dimensional rigid pavement deflection predictions 
  
With the introduction of three-dimensional (3-D, ABAQUS) FEM (Hibbitt et al., 2000) and all 
the promising features reported in the literature, its applications on pavement engineering 
become inevitable (Wu, 2003). Based on the principles of dimensional analysis, Ioannides 
and Salsilli-Murua (1989) indicated that the dimensionless deflection parameter (δkl2/P) is 
only a function of a/l, L/l, and W/l for 2-D FEM analysis. Extreme difficulties were 
encountered while using only these three dimensionless variables (a/l, L/l, W/l) to 
determineδkl2/P for 3-D FEM analysis. Subsequently, an additional dominating dimensionless 
variable (h/a) defined as the ratio of slab thickness (h) and load radius (a) was identified to 
account for the theoretical differences between 2-D and 3-D FEM analyses (Lee et al., 2004). 
A series of 3-D FEM factorial runs was conducted for a single squared slab resting on a 
Winkler foundation under interior loading condition with the following dimensionless 
parameters: a/l=0.05, 0.1~0.5 (step by 0.1); L/l=2~8 (step by 1); W/l=L/l; and 
h/a=0.5~6 (step by 0.5). These ranges were carefully selected to cover a very wide range of 
highway and airfield rigid pavement conditions. An automated analysis program was 
developed using the Visual Basic software package (Microsoft, 1998) to automatically 
construct FEM models, generate the input files, conduct the runs, as well as summarize the 
results to avoid untraced human errors. A 3-D rigid pavement deflection database with 504 
data points was obtained (Liu, 2004).  
 
4.3.1 ANN models 
 
In which, 404 observations were randomly chosen for actual training and the remaining 100 
data points were used for monitoring the training process. Deflection ratio (R) defined as the 
ratio of 3-D FEM results to Westergaard solutions was treated as the response variable. 
Sigmoid activation function was chosen in this case study. The learning rate was set as 0.02 
for the cases analyzed. In the first ANN model (NET1), no transformation was made on the 
response variable. As shown in Table 4 and in Figure 5, the modeling statistics and the 
convergence characteristics of the NET1 model were satisfactory. 
 
Table 4. Comparison of two different ANN models  
ANN Type NET1 NET2 
Outputs R 1/R 
Inputs  a/l, L/l, h/a a/l, L/l, h/a 
Hidden Layer(s)  2 2 
Neurons in Each Hidden Layer 10-4 10-4 
Learning Cycle 30,000 30,000 

RMS Training: 0.00989 
Monitoring: 0.01019 

Training: 0.00539 
Monitoring: 0.00478 

Coefficient of Determination, R2 0.9988 0.9999 
 
Nevertheless, it is worth mentioning that since Westergaard’s closed-from deflection is very 
small for thicker pavements or larger load sizes (larger h/a and a/l), the resulting 3-D FEM 
deflections can be several times of the theoretical solutions due to possible compression 
across the slab thickness. Since the resulting 3-D FEM deflections are always higher than the 
Westergaard solutions, the reciprocal of the deflection ratio (1/R) always ranges from 0 to 1. 
Wu (2003) has illustrated that using 1/R as the response variable lead to better physical 
meanings (or interpretations) of the proposed PPR model. With the incorporation of subject-
related knowledge into the modeling process, it was shown that smaller root mean squared 
errors (RMS) and higher coefficient of determination (R2) have been achieved in the NET2 
model, although the convergence rate was slightly slower. 
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Figure 5. Comparison of the convergence results of two trained ANN modles. 
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Figure 6. Proposed PPR model for the 3-D deflection database 
 
4.3.2 Revised two-step modeling approach using PPR and regression splines  
 
To facilitate future possible applications of the 3-D rigid pavement deflection database, the 
following predictive model as shown in Figure 6 was developed using projection pursuit 
regression technique (Lee & Darter, 1994b; Friedman & Stuetzle, 1981). The response 
variable was chosen as the reciprocal of the deflection ratio (1/R) and the explanatory 
variables were a/l, L/l, h/a, and their variations. Regression spline algorithm was adopted in 
lieu of piecewise-linear regressions at the second step to assure smooth junctions at the 
change points. Consequently, the coefficient of determination (R2) was slightly reduced from 
0.996 to 0.9942 as the expense of this smoothing. The tentative predictive model and its 
regression statistics are as follows: (In which, N is the number of observations and SEE is the 
standard error of the estimation.) 
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4.3.3 Loess models 
 
Several S-PLUS trials of local regressions were conducted using the same database. Again, 
the response variable was chosen as the reciprocal of the deflection ratio (1/R) and the 
explanatory variables were a/l, L/l, and h/a. The resulting loess model was easily obtained 
at a greatly reduced amount of modeling time, in which the smoothing parameter “span” was 
chosen as 0.1, whereas the “cell” argument was chosen as 0.1. The following regression 
statistics were obtained: the number of observations = 504; equivalent number of 
parameters = 56.6; residual standard error = 0.004784; and multiple R-squared = 1.  
 
4.4 Flexible pavement deflection predictions 
 
Based on the multi-layer elastic theory and the principles of dimensional analysis, the 
following dominating dimensionless variables were identified for a three-layer pavement 
system: E1/E2, E2/E3, h1/h2, and a/h2. In which, a is the radius of the applied load, [L]; h1 and 
h2 are the thickness of the surface and base layers, [L]; E1, E2, and E3 are the Young’s moduli 
of the surface layer, base layer, and subgrade, respectively, [FL-2]. A series of factorial BISAR 
runs was conducted with the following ranges to cover most practical pavement data: 
0.5≦E1/E2≦170, 0.5≦E2/E3≦170, 0.2≦h1/h2≦2.4, and 0.5≦a/h2≦5.0. A BASIC program 
written by Dr. Alaeddin Mohseni was used to automatically generate the input files and 
summarize the results to avoid untraced human errors. A pavement response database 
including the aforementioned dimensionless variables, deflections at the center of load (D0), 
horizontal strain (εt) and vertical strain (εv) at the bottom of the surface layer was obtained. A 
training database with 3,600 data points and an independent testing database with 1,728 
data points were used in this study (Liu, 2004). 
 
4.4.1 ANN models 
 
The training database was randomly separated into 3,400 data points for actual training and 
the remaining 200 observations for monitoring the training process. Hyperbolic tangent 
activation function was chosen in this case study. The learning rate was set as 0.01. At the 
first trial (NET1) as shown in Table 5, no transformation was made on both explanatory and 
response variables. Extreme difficulty was encountered in obtaining reasonable convergence. 

 
Based on the basic assumptions of conventional regression techniques that the random 
errors are mutually uncorrelated and normally distributed with zero mean and constant 



variance, and additive and independent of the expectation function, it is desirable to check 
the normality of the response variable. The Box-Cox (1964) transformation procedure was 
adopted to find the approximate power transformation of the response variable (D0). As 
shown in Figure 7(a), the maximum likelihood estimator λ was approximate 0 indicating that 
a logarithm transformation was appropriate for D0 (Weisberg, 1985). Figure 7(b) is the normal 
Q-Q plot which graphically compares the distribution of log(D0) to the normal distribution 
represented by a straight line. This indicates that the logarithm of D0 is approximate to 
normally-distributed. In the second trial (NET2), convergence was obtained though the 
number of learning cycles and modeling time were still very high. The root mean squared 
(RMS) errors were computed accordingly.  

 
Table 5. Comparison of three different ANN models  
ANN Type NET1 NET2 NET3 
Outputs D0 Log(D0) Log(D0) 

Inputs  E1/E2, E2/E3, h1/h2, 
a/h2 

E1/E2, E2/E3, h1/h2, 
a/h2 

log(E1/E2), log(E2/E3), 
h1/h2, a/h2 

Hidden Layer(s)  3 3 2 
Neurons in Each 
Hidden Layer 20-10-5 15-10-5 12-6 

 
Learning Cycle Cannot converge 200,000 27,000 

Modeling Time > 24 hrs 10 hrs 26 min 

RMS --- Training: 0.0048 
Monitoring: 0.0045 

Training: 0.0040 
Monitoring: 0.0039 
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Figure 7. (a) Box-Cox transformation result; and (b) normal Q-Q plot of log(D0). 
 
According to general statistical principles or using the alternating conditional expectations 
(ACE) algorithm (Breiman & Friedman, 1985) together with the Box-Cox power 
transformation technique proposed by Lee (1993), logarithm transformations of D0, E1/E2, 
and E2/E3 were recommended for NET3 model. As shown in Table 5, with more statistical 
knowledge incorporated into the ANN modeling process, the resulting ANN model was proved 
to have higher accuracy and less network training time than the other counterpart using 
purely input parameters. Figures 8(a) and 8(d) depict the network convergence results for 
NET2 and NET3 during the training process. The goodness of the prediction of log(D0) and 
the goodness of the prediction of D0 for NET2 and NET3 were also provided in Figures 
8(b)~8(c) and 8(e)~8(f) during the testing phase, respectively. With more statistical 
knowledge incorporated into the modeling process, the resulting ANN model was proved to 
have higher accuracy and less network training time than the other counterpart using purely 
input parameters. 
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Figure 8. (a) ~ (c) NET2 network convergence results, goodness of the prediction of log(D0), 
and prediction of D0; and (d) ~ (f) for NET3 network, respectively. 
 
4.4.2 Loess models 
 
Several S-PLUS trials of local regressions were conducted using the same training and testing 
databases. Again, the logarithm transformations of D0, E1/E2, and E2/E3 were adopted here. 
The response variable is log(D0) and the explanatory variables are log(E1/E2), log(E2/E3), 
h1/h2, and a/h2. The resulting loess model was obtained at a greatly reduced amount of 
modeling time, in which the smoothing parameter “span” was chosen as 0.1, whereas the 
“cell” argument was chosen as 0.1. The following regression statistics were obtained: 
number of observations = 3,600; equivalent number of parameters = 31.9; residual standard 
error = 0.02792; and multiple R-squared = 1. The goodness of the prediction of log (D0) and 
D0 were presented in Figures 9(a) and 9(b), respectively. 
 
The resulting loess model was compared to the aforementioned NET2 and NET3 models for 
the goodness of D0 predictions during the testing phase. Reasonable good predictions can be 
achieved using both ANN and modern regression techniques.  
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Figure 9. Local regression model: (a) goodness of the prediction of log (D0) and (b) goodness 
of the prediction of D0. 
 
5. CONCLUDING REMARKS 
 
Several case studies were conducted to illustrate the benefits of incorporating the principles 
of dimensional analysis, subject-related knowledge, and statistical knowledge into pavement 
prediction modeling process. The resulting ANN model using all dominating dimensionless 
parameters was proved to have higher accuracy and require less network training time than 
the other counterpart using purely input parameters. Increasing the complexity of ANN 
models does not necessarily improve the modeling statistics. The results also showed that 
using higher number of neurons and hidden layers sometimes lead to even worse modeling 
statistics which was an indication of over training and should be avoided. Several local 
regression models requiring minimal amount of modeling time were also developed using the 
same databases. The resulting loess model was compared to the aforementioned ANN 
models for the goodness of predictions. Reasonable good predictions can be achieved using 
both ANN and modern regression techniques. Statistical and subject-related knowledge can 
be used to guide modeling in most real-world problems and so enable much more convincing 
generalization and explanation, in ways which can never be done by ‘black-box’ learning 
systems (Ripley, 1993). 
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