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ABSTRACT

Since corner breaks are one of the major structural distresses in jointed concrete

pavements, this research study focuses on the determination of the critical bending

stresses at the corner of the slab due to the individual and combination effects of wheel

loading and thermal curling.  A well-known slab-on-grade finite element program (ILLI-

SLAB) was used for the analysis.  Based on the principles of dimensional analysis, the

dominating mechanistic variables were carefully identified and verified.  The resulting

corner stresses were compared to theoretical Westergaard solutions.  Adjustment factors

were introduced to account for this discrepancy.  Prediction models were developed as

an alternative to the very time-consuming and complicated F.E. analysis to estimate

stresses for design purposes with sufficient accuracy.

INTRODUCTION

Cracking of jointed concrete pavements (JCP) is often caused by three different

critical repeated loading positions: transverse joint, longitudinal joint midway between

transverse joints, and at the corner.  Given certain design, construction, and loading

conditions, any of these load positions could lead to fatigue cracking of the slab over

time.  "Load repetition combined with loss of suppor t and cur ling stresses" are

usually recognized as the main causes for corner breaks.  Thus, this paper focuses on the

determination of critical bending stresses at the slab corner  due to loading and curling.

CLOSED-FORM SOLUTIONS

For a slab-on-grade pavement system, Westergaard has presented closed-form

solutions for three primary structural response variables, i.e., slab bending stress,



deflection, and subgrade stress, due to a single wheel load based on medium-thick plate

theory.  By assuming an infinite or semi-infinite slab over a dense liquid (Winkler)

foundation, Westergaard obtained the following equation for a circular corner load [1]:
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(Eq.1)

Where σw is the critical corner stress, [FL-2]; δw is the critical corner deflection, [L]; P is

the total applied wheel load [F];  h is the thickness of the slab [L]; a is the radius of the

applied load [L]; l = −[ / ( *( )* )]^ .Eh k3 212 1 0 25µ  is the radius of relative stiffness of the

slab-subgrade system [L]; k is the modulus of subgrade reaction [FL-3]; E is the modulus

of elasticity of the concrete slab [FL-2]; and µ is the Poisson's ratio of the concrete.  Note

that primary dimensions are represented by [F] for force and [L] for length.  The

distance to the point of maximum stress along the corner angle bisector was roughly:

X a a1 2 2 2 38= ≅l l. (Eq.2)

The above stress and deflection equations were derived using a simple

approximate process and has been debated and led to numerous revisions such as those

proposed by Bradbury, Kelly, Teller and Sutherland, Spangler, and Pickett over the

years [2].  Despite this argument, Ioannides et al. [3] later has indicated that the ILLI-

SLAB F.E. results closely fall between those predicted by Westergaard and Bradbury.

The ILLI-SLAB stresses are the minor  pr incipal (tensile) stresses occurring at the top

fiber of the slab corner.  Thus, Westergaard's approximation was still fairly good.

Considering curling stresses caused by a linear temperature differential on a

concrete slab over a dense liquid foundation, Westergaard [4] developed equations for

three slab conditions (i.e., infinite, semi-infinite, and an infinite long strip).  The interior

stress for an infinite slab is:
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(Eq.3)

Where σ0 is the interior curling stress, [FL-2]; α is the thermal coefficient, [T-1]; and ∆T

is the temperature differential through the slab thickness, [T].  Primary dimensions are

represented by [F] for force, [L] for length, and [T] for temperature.  Bradbury [5] later

expanded Westergaard's bending stress solutions for a slab with finite dimensions.

However, there exists no explicit closed-form corner stress solutions.

Even though Westergaard and Bradbury all suggested that the combined effect of

loading plus curling could be treated as "a simple mater of addition" in most cases,



many investigators have indicated that such an action may not always be conservative [3,

6] due to the possible loss of subgrade support and violation of full contact assumptions.

F.E. COMPUTER PROGRAM

The analysis of finite slab length and width effect was not possible until the

introduction of finite element models. The ILLI-SLAB F. E. program developed at the

University of Illinois since 1977 was used for the analysis.  The present version (March

15, 1989) [6] was successfully complied on Unix-based workstations of the Civil

Engineering Department at Tamkang University.  With some modifications to the

original codes, a micro-computer version of the program was also developed using

Microsoft FORTRAN PowerStation [7].

CHARACTERISTICS OF CORNER STRESSES

A preliminary analysis of the structural response characteristic of a slab has

indicated that the location of the maximum combined stress due to loading plus curling

varies from case to case.  Thus, unlike the analysis of interior or edge stresses where the

maximum stresses occur at the same critical center or mid-slab location, the analysis of

corner stresses is probably the most difficult one among these three cases.  Assume a

slab with the following characteristics: L/l = 7, W/l = 7, l = 41.86 in., h = 12 in., k =

240 pci, E = 5 Mpsi, γ = 0.087pci, µ = 0.15, a/l = 0.1, c = 7.5 in., ∆Τ= -20 oF, and α=

5.5E-06 /oF, as illustrated in Figure 1 (a).

The individual and combined stress

contour plots of all cases were shown in

Figure 1 (b) - (f), respectively.  In summary,

if the temperature differential is relatively

small combined with a large corner load,

the critical stress location is very close to

Westergaard's maximum load stress

location (Eq.2).  However, if the

temperature differential is very large along

with a very small corner load, the critical

stress location may shift toward and up to the center of the slab.  For the combined

effects of medium loading and medium curling, the maximum stress location falls



between them. Thus, the location of the maximum combined stresses due to loading

plus curling will fall within the Westergaard’s location and the center of the slab along

the corner angle bisector as illustrated in the above figure.  Furthermore, the corner

stress along the line of a 1/4 circle centered at the very corner of the slab also shows

about the same magnitude at most locations.  This may help to explain the mechanism

of the development of corner breaks as well.

Consequently, necessary modifications were made to the existing ILLI-SLAB

codes to facilitate the search of critical stresses and locations alone the corner angle

bisector or the diagonal nodes up to the center of the slab for the remaining analyses.

IDENTIFICATION OF DIMENSIONLESS VARIABLES

Investigators [8] have demonstrated that F.E. solutions for three primary structural

responses due to a single wheel load can be concisely defined by the following

expression for a constant Poisson's ratio (usually µ ≈ 0.15) using dimensional analysis:
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Where σ, q are slab bending stress and vertical subgrade stress, [FL-2];  δ is the

slab deflection, [L]; f1 is a function of a/l, L/l, and W/l; and L, W are finite slab length

and width, [L].  Also Note that variables in both sides of the expression are all

dimensionless.  The dependent variables are σh2/P, δkl2/P and ql2/P, which are only

dominated by the normalized load radius (a/l), and the normalized slab length and width

(L/l and W/l) rather than the other input parameters, such as E, h,  k, a, etc.

Furthermore, according to recent research by Lee and Darter [8] for the stress

analysis at the very edge of the slab, concise relationships have been proposed and

numerically validated through a series of F.E. runs.  The dimensionless variables due to

the effects of curling alone and loading plus curling for a constant Poisson's ratio are:

σ δ α γ

σ δ α γ
E

h qh
k

f T L W h
k

E
h qh

k
f a T L W h

k
ph
k

, , , , ,

, , , , , , ,

l l l l l

l l l l l l l

2 2 2

2

2

2 2 3

2

2 4

= 





= 





∆

∆

D
h

k
D ph

kpγ
γ

= =
2

2 4l l
,

(Eq.5)

Where γ is the unit weight of the concrete slab, [FL-3]; and f2 , f3 are functions for

curling alone and curling plus loading, respectively.  Also note that Dγ was defined as



the relative deflection stiffness due to self-weight of the concrete slab and the possible

loss of subgrade support, whereas DP was the relative deflection stiffness due to the

external wheel load and the loss of subgrade support.  Conceptually, the above

relationship should be applicable to any given loading conditions.

CORNER STRESS PREDICTION MODELS

A series of F. E. factorial runs were performed based on the dominating

mechanistic variables identified [9].  Several BASIC programs were written to

automatically generate the F. E. input files and summarize the desired outputs.  The F. E.

mesh was generated according to the guidelines established in earlier studies [2].  As

proposed by Lee and Darter [10], the projection pursuit regression (PPR) introduced by

Friedman and Stuetzle [11] was used for the development of the following three stress

prediction models.  This algorithm is available in the S-PLUS statistical package [12].

CASE I:  Loading Only

In CASE I, a single wheel load was applied at the slab corner alone.  The

following factorial F.E. runs were conducted:

a/l: 0.05, 0.1, 0.2, 0.3;    L/l: 2, 3, 4, 5, 6, 7;    W/l: 2, 3, 4, 5, 6, 7 (L/l≧ W/l)

Since L/l and W/l are analogous, a total of 84 runs were only necessary if slab

length was chosen to be greater than slab width.  The resulting corner stresses were

compared to Westergaard solution.  The following prediction model was developed:
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Statistics and Limits:

 N = 84,  R = 0.980,  SEE =  0.0081,  CV = 0.79%,2 0 05 03 2 7. / . , / , / /≤ ≤ ≤ ≤ ≤a L W Ll l l l

Note that N is the number of data points, R2 is the coefficient of determination,

SEE  is the standard error of estimates, and CV is the coefficient of variation.  This



prediction model is also applicable to a larger slab when the upper bound value of 7.0 is

used for the normalized slab length or width (L/l, W/l).

CASE II:  Loading Plus Cur ling, but ∆T=0

In CASE II, the combination effect of a single wheel load and a linear temperature

differential (∆T) at the slab corner was considered.  But, ∆T was assumed to be zero

or  very close to zero.  Therefore, the ILLI-SLAB program was modeled to allow partial

contact between the slab-subgrade interface.  The following F.E. runs were conducted:

a/l: 0.05, 0.1, 0.2, 0.3;  L/l: 2, 3, 4, 5, 7, 9, 11, 13, 15;  W/l＝ L/l;  α∆T=0.

Note that a square slab up to a maximum normalized slab length (L/l) of 15,

which may satisfy Westergaard's infinite slab assumption for thermal curling analysis.

Furthermore, to account for Dγ and DP effects without increasing the number of F.E.

runs, the above factorial runs were randomized by these two factors for different a/l

values [9].  The following predictive model was developed:
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CASE III:  Loading Plus Cur ling, but ∆T<0

In CASE III, ∆T was assumed to be different from zero.  The factorial F.E.

runs for CASE II with different ∆T values: ∆T: -10, -20, -30, -40 oF (α=5.5E-06 /oF)

was selected for this case.  Thus, a total of 432 factorial F.E. runs were conducted for

this analysis.  The following predictive model for the adjustment factor was developed:
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Where σi is the combined maximum corner stress, [FL-2]; and σ0 is defined by (Eq.3).

VALIDATION OF STRESS PREDICTIONS

To further validate the applicability of the proposed prediction models for all three

cases, a totally separate set of database was created using the following input parameters:

E = 3.0, 5.5, 8.0 Mpsi; k = 50, 250, 500 pci; L =120, 240, 360 in.; h = 8, 12, 16 in.; ∆T=

0, -20, -30, -40 oF (α=5.5E-06 /oF).  Note that the other pertinent input parameters are: c

= 10 in., a = 5.642 in., P = 9000 lbs, p = 90 psi, µ = 0.15, γ = 0.087 pci, and W = L.

This will result in a total of 81 ILLI-SLAB runs with the ranges of a/l = 0.07 ~

0.21, L/l and W/l = 1.4 ~ 15.9 for Case I and Case II, and a total of 243 ILLI-SLAB

runs for Case III.  When the values are outside the specified limits of the prediction



model, the upper or lower bounds were applied for the analysis.  The predicted stresses

were plotted against the resulting ILLI-SLAB stresses [9].  All the plots showed very

good agreements and thus further verified the applicability of the prediction models.

A NUMERICAL EXAMPLE

Consider a pavement slab with the following characteristics: E = 3 Mpsi, k = 400

pci, L = 141 in., W = 141 in., h = 9.97 in., γ= 0.224 pci, μ = 0.15, and α= 5.5E-06 /
oF.  A single wheel load of 7,624 lbs with a loaded rectangle of the size of 10x10 in2 is

applied at the slab corner.  A linear temperature differential of -10 oF (night-time curling)

exists through the slab.  Determine the critical corner stresses due to loading alone, and

loading plus curling.  (Note: 1 psi = 6.89 kPa, 1 pci = 0.27 MN/m3,  1 in. = 2.54 cm, 1 oF

= (F - 32) / 1.8 oC, 1 lb = 4.45 N.)

The equivalent radius of the loaded area is a = 5.64 in. and the radius of relative

stiffness of the slab-subgrade system is l = 28.21 in.  Therefore, the dimensionless

mechanistic variables are a/l = 0.2, L/l = W/l = 5, ADT= 5.5, DG = 7, and DP = 30.

The Westergaard solutions are σw = 122.3 psi and σ0 = 97.1 psi for loading and curling

alone using (Eq.1) and (Eq.3).

For the case of loading only, the adjustment factor R = 1.054 using (Eq.6).  Thus,

the corner stress determined by the proposed model is 1.062 x 122.3 = 129.9 psi.  (Note

that the resulting ILLI-SLAB stress was 129.1 psi.)

For the case of loading plus curling, the adjustment factors for Case II and Case III

are R = 1.054 and 0.139 using (Eq.7) and (Eq.8), respectively.  Thus, the predicted total

corner stress determined by the proposed model is 1.054 * 122.3 + 0.139 * 97.1 = 142.4

psi.  (Note that the ILLI-SLAB corner stress was 147.5 psi.)

CONCLUSIONS

The corner stress of a concrete slab due to the individual and combination effects

of loading and night-time curling was conducted under this study.  A linear temperature

differential across the slab thickness and a dense liquid foundation were assumed.

Based on the principles of dimensional analysis, six dimensionless mechanistic

variables which dominate the primary structural responses were used for the analysis.  A

new modeling procedure was utilized to develop stress prediction models.



The prediction models were properly formulated to satisfy applicable engineering

boundary conditions.  The models not only cover almost all practical ranges of

pavement designs, but they are also dimensionally correct.  These models can be

implemented as part of design procedures to the very time-consuming and complicated

F.E. analysis to estimate stresses for design purposes with efficiency and sufficient

accuracy.  A numerical example showing the use of the models was also provided.
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Figure 1 - Distribution of the Tensile Stresses on the Top of the Slab
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